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A. SCIENTIFIC OBJECTIVES:

Conventional radar signal processing is based on two simplified assumptions about target
scattering: (i) that the target is a rigid body; (ii) that the target can be modeled as a
collection of independent point scatterers without any multiple scattering effects.
However, real radar data can deviate significantly from these two simplified assumptions.
First, real-world targets are often observed by radar sensors under dynamic conditions
where non-rigid body motions can exist. These non-rigid body motions give rise to
“microDoppler” phenomena, which have been observed in a number of SAR and ISAR
sensors. Examples of microDoppler phenomena include returns from moving
components on the target such as scanning antennas or rotating wheels, as well as those
from flexing and vibration of the target frame. Second, strong multiple scattering physics
are often encountered in inlets and cavity structures on the target. For instance, the most
prominent feature on an air target is often the range-delayed return from the jet inlet duct.
Significant modeling work has been carried out by the computational electromagnetics
community to characterize the complex scattering from inlet structures, yet little effort
has been placed on utilizing the results to develop better imaging algorithms to map the
inlet interior. The objectives of this research program are: (i) to gain in-depth
understanding of these higher-order phenomena through simulation and measurement, (i)
to develop physics-based models and the associated signal processing strategies to extract
the resulting radar features, and (iii) to exploit and utilize these additional features to

enhance the performance of automatic target recognition (ATR) algorithms.




B. SUMMARY OF RESULTS AND SIGNIFICANT ACCOMPLISHMENTS:
During the first year of this research program, three areas of investigation have been
initiated.  First, we have designed, built and tested a low-cost radar sensor for
microDoppler data collection. The system costs less than $3,000 and is tunable between
4to0 10 GHz. Preliminary data from a moving human have been collected and processed.
Second, we have begun to develop simulation tools to aid in the interpretation and
understanding of microDoppler and multiple scattering phenomena in complex targets.
In particular, a multi-platen z-buffer algorithm was investigated for fast ray tracing and
the results show promise as a real-time simulation tool. Finally, we have investigated the
application of genetic algorithms and time-reversal imaging techniques to improve target-
to-clutter performance and to achieve better feature extraction. Our detailed progress

along these three lines is described below.

MicroDoppler Radar and MicroDoppler Data Collection. We have developed a
wideband radar testbed that is fully tunable between 4 to 10 GHz (see Fig. 1). The
purpose of this hardware effort is to provide data collection capability that will allow us
to study the microDoppler phenomenology in great detail. The radar is a homodyne
system with full I/Q detection. Data acquisition is accomplished using a National
Instruments DAQ card and the results can be displayed on a laptop computer. Careful

calibration of the radar was carried out using tuning forks and an audio speaker.
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Fig. 1. A low-cost Doppler radar system built at UT-Austin. The radar is tunable from 4 to
10 GHz.




Preliminary data collection of walking humans was carried out in an indoor, high-
clutter environment (see Fig 2). The microDoppler phenomenon from human gait was
previously investigated by Geisheimer et al. [1, 2]. It was shown that a number of
interesting microDoppler features from a walking person can be observed using the
spectrogram. A similar analysis was also carried out by processing the data collected
from Navy’s APY-6 radar of a person walking [3]. However, much work is needed to
gain a more complete phenomenological understanding of the detailed features associated

with human movements in a wide variety of scenarios.
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Fig. 2. MicroDoppler features observed in the measured data of a walking person
collected using the radar shown in Fig. 1.

We have carried out some preliminary feature extraction effort using the joint
time-frequency (JTF) processing tools that we have developed previously under ONR
sponsorship. Fig. 3 shows the use of chirplet bases to achieve signal separation of the
human gait data. The different (dwell time)-(Doppler frequency) behaviors from various
body movements were exploited to separate out the individual microDoppler features.

In the coming year, we plan to carry out extensive data collection over a wide
variety of parameter spaces, include various types of movements (walking, running,

crawling, and involuntary motions such as respiration), different environments (indoor,
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Fig. 3. Feature extraction of the measured walking data using joint time-frequency signal
processing. The raw data are parameterized using the adaptive chirplet
decomposition, and the different features are extracted based on the chirplet
parameters.

outdoor urban, through-wall, occluded by foliage, underground facilities), over a wide
range of frequencies, and for different human subjects. We will investigate the use of
improved basis sets derived from the actual physics of human movements for feature
extraction. As this research matures, we expect to build up a comprehensive dictionary
of microDoppler features, from which feature extraction and automatic classification

algorithms can be successfully developed.

Ray Tracing Simulation. We have initiated research to develop efficient simulation
tools to aid in the interpretation and understanding of microDoppler and multiple
scattering phenomena in complex targets. Our simulation methodology is based on the
shooting and bouncing ray (SBR) technique. The simulation of radar returns from non-
rigid targets is extremely computationally intensive based on SBR. Therefore, we have
devoted our efforts to explore ways to speed up the ray tracing time. »

The Binary Space Partition (BSP) tree algorithm [4] is the most standard ray

tracer in use. In the algorithm, a BSP tree is first built based on the facet model of the




target by recursively cutting the bounding box of the object along a spatial plane. Ray
tracing is then performed by traversing the BSP tree. The BSP-tree based ray tracer is
considered the fastest among all of the spatial subdivision approaches. Recently, the
multiplaten z-buffer ray-tracing algorithm was proposed by Hu et al [5, 6] as an
alternative to the traditional BSP tree algorithm. In the multiplaten z-buffer (MPZ)
approach, a multi-layered z-buffer is first generated from the scan conversion process
(Fig. 4(a)). Instead of just storing the z-coordinates of the visible pixels as in the
traditional z-buffer process, multiple z-buffers are created to store the z-coordinates of all
of the facets within each pixel during the scan conversion. During the ray trace, a ray is
tracked by moving along the ray direction pixel-by-pixel. Within every pixel, the z-depth
of the ray is compared to all of the z-buffer values for that pixel to check for possible
intersections (Fig. 4(b)). Once an intersection is found, the hit point and the reflection
direction can be calculated, and the tracing process is then iterated until the ray departs
from the bounding box. We have evaluated the computation time performance of the
MPZ ray tracer against that of the BSP tree-based algorithm. Results for a wide range of
targets have been tested to determine the computational as well as memory complexity as
functions of the number of facets and the complexity of the target. We found that,
contrary to the BSP algorithm, the complexity of the MPZ is independent of the number
of facets comprising the target (see Fig. 5). However, the computation time is dependent

on the number of pixels traversed by a ray.
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Fig. 4. (a) Multi-layered z-buffer. (b) Ray tracing using the multilayered z-buffer.
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Fig. 5. Computational time of the various ray-tracing algorithms versus the number of
facets comprising a test cavity. (a) Binary Space Partition (BSP) tree. (b) Multi-
platen z-buffer (MPZ). (c) Multi-aspect MPZ (MMPZ) with a z-buffer every 20°.
(d) Multi-aspect MPZ with a z-buffer every 1°.

To further speed up the performance of MPZ algorithm, we are investigating a
multi-aspect MPZ approach. The approach is motivated by the fact that the number of
pixels a ray traverses between bounces can be reduced dramatically by decreasing the
angle between the ray direction and the z-buffer direction. In the algorithm, multiple
multi-layered z-buffers are first generated from the scan conversion process along many
aspect angles. The maximum number of multi-layered z-buffers is limited only by the
available memory resource. The more aspect angles that be stored, the less pixels a ray
traverses in one bounce, and the better the time performance. During the ray trace, the
multi-layered z-buffer structure that has the closest aspect to the ray direction is selected
to carry out the ray tracing. A ray is then tracked by moving along the ray direction inside
this MPZ structure pixel-by-pixel to check for possible intersections. Once an intersection
is found, the hit point and the reflection direction are calculated. Based on the new ray

direction, a new MPZ is chosen, and the tracing process is iterated until the ray departs




from the bounding box. As can be seen in Fig. 5, a dramatic improvement of performance
against that of the single-aspect MPZ can be achieved. We are currently investigating the

possibility of implementing this algorithm as a real-time tool to simulate scattering from

complex targets.

Exploratory Research on Inverse Scattering and Time-Reversal Imaging. We have
carried out some exploratory research into the topics of inverse scattering and time-
reversal imaging. It is well recognized that traditional imaging algorithms suffer from
resolution limitation and image artifacts due to ‘multiple scattering phenomena.
Rigorously solving the electromagnetic inverse scattering problem, on the other hand, is
much more challenging. In our previous research on inverse scattering, we applied a
genetic algorithm (GA) together with a computational electromagnetics solver to attack
the two-dimensional inverse scattering problem [7). The inversion was cast into an
optimization problem whereby the difference between the measured fields and the
computed fields from a forward electromagnetic solver was minimized. We found that
while GA was well suited in searching for the global optimum, it suffered from slow
convergence. Since the evolutionary process for the standard GA to reach a cost
minimum is in general very slow in comparison to a local search algorithm, a natural
improvement to speed up the simple GA is to hybridize the simple GA with a local
search. While this hybrid GA (HGA) shows improvements in performance, it also leads
to some inefficiency. As the parent selection scheme of GA gives priority to the best
members, it usually leads to a population that is highly clustered around the local minima.
This clustering is necessary for the simple GA to evolve closer to the exact minimum. For
HGA, however, since ‘the local minima have been completely explored by the local
search, such clustering will lead to the re-exploration of these regions, which is quite
wasteful. In our research, we have proposed a technique combining HGA with the tabu
list concept to increase the efficiency of the HGA. The idea was motivated by the Tabu
Search (TS) algorithm used in combinatorial problems [8, 9]. The tabu list is adopted to
exclude those regions in the parameter space that have already been explored by the local
search. In this manner, there will be no revisiting of the explored regions and the GA

population can be spread out to explore new regions, thus improving the search




efficiency. We have applied this algorithm to the electromagnetic inverse problem of
shape reconstruction of metallic cavity structures containing strong multiple scattering
effects. The algorithm has been applied to reconstruct the shape of a metallic cavity
based on the measuréd Ipswich data [10]. Fig. 6 shows that the inversion results from the
HGA-Tabu converge faster and at higher success rate than those of the simple GA and

hybrid GA. The algorithm could potentially be useful in other optimization/inverse

problems.
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Fig. 6. (a) Convergence comparison for the shape inversion of a metallic cavity for
random search, simple GA, hybrid GA (HGA) and HGA-Tabu. The HGA-Tabu
shows the best convergence. (b) Typical inverted shape based on measured data
by simple GA. (c) Typical inverted shape by HGA-Tabu.




Finally, we have initiated some exploratory research into the concept of time
reversal imaging. In the past decade, time reversal methods have been extensively
investigated in the acoustics and mathematics communities [11-14]. The original
motivation of time reversal was to achieve lithotripsy by focusing the acoustic field from
a near-field, physical array on a prescribed focal point through a complex propagation
medium. This was accomplished by applying the time reversal operation (or phase
conjugation in frequency) to a pilot signal sent out by the array. It was demonstrated
theoretically and experimentally that the fields from the array could be focused at a
prescribed point through a complex propagation medium. Thus, it is potentially an
attractive means of overcoming medium distortion and clutter in radar imaging of
occluded térgets. However, there are major gaps between what has been achieved in
acoustics and what needs to be developed for radar sensors to achieve high-resolution
radar imaging. First, it has not been demonstrated to date that being able to focus on a
point scatterer can translate directly into good imaging performance without additional
information about the medium. Nor is it clear that any proposed algorithms can perform
effectively in realistic radar clutter such as foliage or walls. Second, existing time
reversal methods require the collection of array calibration data in the bistatic scenario
involving a real physical array. Realistic radar imaging sensors, on the other hand,
operate in the monostatic, synthetic aperture mode. Finally, contrary to the scalar wave
case considered in acoustics, electromagnetic polarization is a new dimension that should
be exploited in time reversal imaging for clutter rejection. '

In our preliminary research, we address the case when the medium is unknown,
yet a set of “calibration targets” with known positions is located in the vicinity of the
target to be imaged. This means that once we can focus the wave on the calibration target
using time reversal, it is possible to extract useful information about the propagation
distortion caused by the clutter. Fig. 7(a) shows the scenario considered. We use point
scatterer testing and assume that the medium distortion is described by a random phase
function @ that is uniformly distributed between [0, 27/ and uncorrelated between paths.
Fig. 7(b) shows the results of applying conventional free-space imaging to the data. The
smearing in the cross range is severe. Next, we apply a subspace-based time reversal

algorithm [12] to the data and focus the wave onto a calibration point (xp,yp). After the
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Fig. 7. Results of time reversal imaging by focusing on a calibration point.




time reversal process, the synthesized receive fields on the array elements are:

Er(kx,ky)=e—j(k"x0+kyy0)e_jq> (1)

where k. and k, are related to the array element position and radar frequency. Since

(x9,yp) are known, we can now remove the propagation effect and construct the image.

The result is shown in Fig. 7(c). Fig. 7(d) shows the reference image in the absence of
any clutter. As we can see, the time reversal processing with calibration nearly recovers
the clutter-free image. The minor “ghosts™ are believed to be due to the assumption that
the eigenvector chosen corresponds only to the calibration point. This deficiency can be
circumvented by carrying out a MUSIC-like procedure using null-space processing [15].
There are many open questions still yet to be addressed theoreticaily, and much more

research is needed to make this concept a practical radar algorithm.

C. FOLLOW-UP STATEMENT:

During the coming year, our research will be devoted to three fronts. First, we
will utilize our microDoppler radar testbed to carry out extensive data collection.
Various scenarios will be considered, including types of movements, different
environments, over a wide range of frequencies, and for different targets. Second, we
will apply simulation and signal processing tools for the extraction and interpretation of
scattering phenomenology in the measured data. Third, we will leverage upon the
measured database to develop classification algorithms to distinguish different classes of
targets to achieve automatic recognition. The potential impacts of this basic research
program on naval radar surveillance capabilities are twofold. First, through simulation,
measurement and signal processing, this research will result in an in-depth understanding
of the radar features due to target micro-dynamics and multiple scattering physics.
Second, our research will lead to novel exploitation of target features that can
significantly improve the non-cooperative target recognition (NCTR) capabilities for

existing and future naval radar sensors.
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During the reporting grant period, we hosted Professor Caner Ozdemir of Mersin
University, Turkey as a visiting professor under the NATO B-2 Fellowship. Professor
Ozdemir spent three months in the summer of 2003 at the University of Texas. He
carried out research with our group in ground penetrating radar imaging. Both simulation
and measurements were carried out at our facility. Some initial results of this work have
been reported in [6] and [9]. Further collaborative research is being carried out between
Professor Ozdemir and our group since his return to Turkey.

We have also interacted closely with Dr. Charles Liang of the Joint Strike Fighter
program at Lockheed Martin Aeronautics Company in Fort Worth, TX on scattering from
inlet ducts. Extensive validation of our simulation tools were carried out against
wideband measured data from Lockheed. We are exploring the potential of developing
an RCS diagnostic tool for finding “hot spots” in an inlet structure for signature reduction
applications.

The PI, together with Dr. Victor Chen of Naval Research Laboratory and Bill
Miceli of ONR, guest-edited a special issue of the JEE Proceedings on time-frequency

analysis for synthetic aperture radar and feature extraction.
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None.
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Mr. Hosung Choo, a graduate research assistant in our laboratory, received first
- place at the student paper competition at the 2003 URSI National Radio Science Meeting
held in Columbus, Ohio in June 2003.




APPENDIX

Publications Supported by ONR

Research Grant N00014-03-1-0021




* Multidimensional Systems and Signal Processing, 14, 223-240, 2003
@© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Algorithm te Detect the Presence of 3D Target
Motion from ISAR Data

JUNFEI L1 fei@panam.edu
Department of Electrical Engineering, The University of Texas-Pan American, Edinburg. TX 78539

HAO LING
Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712-1084

VICTOR CHEN
Airborne Branch, Naval Research Laboratory, Washington, DC 20375

Received December 1, 2000; Revised December 1, 2000; Accepted August 7, 2001

Abstract. We present an algorithm to detect the presence of 3D target motion from ISAR data, Based on the 3D
point scatterer model, we first examine the effect of 3D motion on ISAR imaging. It is shown that existing motion
compensation algorithms cannot properly focus targets exhibiting 3D motion during the imaging interval. An
algorithm is then derived to blindly detect the degree of 3D target motion from raw radar data. It is based on
~ measuring the linearity of phases between two or more point scatterers on the target. The phase estimation is
implemented using the adaptive joint time-frequency technique. Examples are provided to demonstrate the
effectiveness of the 3D motion detection algorithm with both simulation and real ISAR data. The detection results
are corroborated with the truth motion data from on-board motion sensors and correlated with the resulting
ISAR images.

Key Words: radar imaging, motion compensation, 3D motion detection

1. Introduction

High-resolution inverse synthetic aperture radar (ISAR) imaging is regarded as an
effective tool in automatic target recognition [11, [2]. Ideally, the desired target motion
is uniform rotation without translational motion, under which a two-dimensional (2D)
Fourier transform brings the radar data in the (frequency)-(dwell time) domain into the
(range)-(Doppler frequency) domain. Otherwise, motion compensation is needed as an
intermediate step to form a focused ISAR image.

Since target motion can always be decomposed into translational motion and rotational
motion, a typical motion compensation algorithm consists of two steps. First, a point on
the target is focused through translational motion compensation. When there is non-
uniform rotational motion, other points on the target are not necessarily focused.
Rotational motion compensation is then applied to focus these other points. Existing
motion compensation algorithms usually assume that the rotational motion of a target is
confined to a 2D plane during the dwell duration [1], [2], [3}, [4], [5], [6], [7]. We shall
use the term 2D motion to refer to target rotational motion of this type. Under the 2D
motion assumption, rotational compensation of a second point on the target will focus
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the whole target. When there is 3D motion, i.e., when the rotational motion is not
confined to a 2D plane, rotational compensation of a second point cannot focus the
whole target.

Recently, several independent research groups have reported that, for aircraft undergoing
fast maneuvers or ships on rough seas, the motion of a target may be highly chaotic and
does not always obey the 2D motion model [8], [9], [10]. As a result, the image formed
using the standard motion compensation algorithms is blurred. In [8] and [9], the effect of
3D motion on ISAR imaging is discussed. However, target motions are assumed to be
known from other auxiliary sensor data that are usually not accessible in real operational
environment. In []10], the imaging interval is adaptively chosen based on the resolved
target feature in the radar image to overcome the 3D motion issue. It requires sound
knowledge of the target under consideration, which is often not known to the end users of
ISAR data.

The objective of this paper is to develop an algorithm to detect the presence of 3D
motions during the imaging interval from ISAR data. Based on the 3D point scatterer
model, we first examine the effect of 3D motion on existing imaging algorithms. We
then develop an algorithm to blindly detect the existence of 3D motion. For this
purpose, only the estimation of phases of several prominent point scatterers is needed. It
can be accomplished by the joint time-frequency analysis [6]. With the detection
algorithm, we have the ability to distinguish the time intervals when the target undergoes
smooth 2D motion from those containing more chaotic 3D motion. As a result, the good
imaging intervals where focused images are more easily formed can be automatically
determined.

The paper is organized as follows. First, the ISAR imaging problem is formulated in
terms of a point scatterer model in Section 2. In Section 3, the 2D motion assumption in
existing motion compensation algorithms is analyzed. We show the reason why 3D
motion is a problem for ISAR imaging. Section 4 discusses-the 3D motion detection
algorithm in detail. Examples from both simulation and measurement data are presented
in Section 5. The conclusions are given in the last section. '

2. 2D and 3D Motion Models ’

The standard model used in ISAR processing is the point scatterer model given as

Ns

E(f,ip)=Y_ a,-(x;,y,-)exp{ —jizl[’(fo) +% +J’i80(fu)]} (1)

i=l

where f is the radar frequency and 1, is the dwell time. The radar echo data E(J, tp) is
in the (frequency)-(dwell time) domain. x and y represent the target range and cross-
range positions, respectively. The target consists of N, point scatterers, with the /™
point scatterer depicted by position (x; y;) and strength o(x;, ;). The target motion
includes both the translational motion described by r(fp) and the rotational motion

AT e g
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Figure 1. Geometry of an ISAR problem.”

described by (tp). When there is no translational motion and the rotational motion is
uniform, it is seen that a 2D Fourier transform brings the radar data E(f, {p) into
a radar image ofx, y). Otherwise, motion compensation is a critical step in ISAR
imaging. -

The above model is what we call a 2D problem since the target rotational motion is
confined to a 2D plane and describable in terms of only one angular parameter ¢. When
‘thiere is 3D motion of the target, a more general 3D model is required:

Ns :
E(f,tp) = Z Ui(xi,yi,zi)exp{ -J'ﬁgf—["(lo) + x; + yip(ip) +Zi9(tn)]}' (2)

f=

In the above expression, a third coordinate z of the target is included to represent the
3D target and another independent angular motion parameter @ is introduced to
describe the 3D rotational motion (see Figure 1). It is possible to perform 3D target
imaging if the target motion is known exactly [11], [12]. In practical ISAR scenarios,
however, we have no access to the target motion. Our objectives here are to examine
the effect of 3D motion on ISAR imaging and devise an algorithm to detect the
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(a) (b)

L : 0
Figure 2. Tlustration of 2D motion vs. 3D motion.

presence of 3D motion from the radar data itself, i.e., without any additional knowl-
edge of the target motion,

3. Problem of Existing Motion Compensation Algorithms with 3D Target Motion

First, we show that the more general 3D model degenerates into the 2D model under two
conditions. The first case is when there is a linear relationship between ¢ and @ (Figure 2),
ie.,

8(tp) = by(tp)- (3)

This allows us to cast equation (2) into the form

l Ns
E(fyt0) = Y, oilinYis Zi)eXP{ ——jﬁ%f—[r(tp) +xi+ (i + bz,')‘P(fD)]}- (4)

i=1

Comparing (4) with (1), we see that if we define y} = y; + bz, then the rotational motion is
in fact a two-dimensional one and the resulting 2D image o(x;, 1) is the projection from
the 3D target o{x; Yi, z;) onto the 2D motion plane.

The second case is when the 2 dimension of the target is s0 small that the third phase
term in (2) can be neglected. For example, suppose a radar operates at a frequency of
10 GHz and the @ variation is limited to 0.5 degree. 1f the target thickness in the
z-dimension is less than 0.2 m, then the third phase term is less than #/4 and the 2D
model is adequate.

From the above consideration, we se€ that the 2D model is applicable if either the
rotational motion is 2D or the target is of 2D in extent. When there exists 3D motion on a
full 3D target, any motion compensation algorithms based on the 2D model is not expected
to focus the target well. We will now examine this issue in more detail. Since the
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Figure 3. Phase linearization achieved by rotational motion compensation. (a) Phases of two point scatterer with
2D rotational motion. (b) Both phases are linearized with rotational motion compensation. (c) Phases of two point
scatterers with 3D motion. (d) Only one phase is linearized with rotational motion compensation.

- translational motion compensation is independent of the models in (1) and (2), only the
rotational motion compensation needs to be investigated. With 2D rotational motion
present, the phase of a point scatterer i due to the rotational motion is

Pi(tp) = yip(tp)- (5)

Here, the constant 47f/c has been suppressed for simplicity. As we can see from (5), the

phases of all the point scatterers are linearly related to each other (through the ratio of
their cross range positions). If we make one of the phases a linear function of time, then

all the phases are linearized simultaneously, and the whole target can be focused after the

Fourier transform. This is the basis of most 2D rotational motion compensation algorithms

based on the point scatterer model [3], [4], [5], [6]. This concept is illustrated in Figure 3.

Figure 3(a) shows the phase functions of two point scatterers under 2D rotational motion.

Figure 3(b) shows that both points can be made linear functions of time after we force one’
of them to be a linear function.
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Figure 4. Problem with a typical motion compensation algorithm. (a) Target undergoes a 2D motion. (b) Image
after translational motion compensation. (c) image after rotational motion compensation. (d) Target undergoes 2
3D motion. () Image after translational motion compensation. (f) Image after rotational compensation.

With 3D motion, the phase of a point scatterer due to the rotational motion is

Pi{tp) = yip(tp) + 2:(tp)- (6)

In this case, the phases of the point scatterers are no longer linearly related. If we make one
of the phases a linear function of time, the phases of the other point scatterers are not
automatically made linear functions of time, as was the case -of 2D motion. Figure 3(c)
shows the phase functions of two point scatterers with 3D motion. As we can see from
Figure 3(d), after one point is forced to be of linear phase, the phase of the other point
remains nonlinear.

Figure 4 illustrates some simulation results of the effect of the rotational motion
compensation based on the model in (1) on the final images under 2D and 3D target
motion. The adaptive joint time-frequency (AJTF) algorithm reported in [6] is used for
motion compensation. Ten points in 3D. space are used to simulate the radar data.
Figure 4(a) shows an assumed 2D rotational motion. Figure 4(b) shows the image after
the translational motion compensation. The image shows one point being focused in
range cell 25 while other points are unfocused due to the rotational motion. Figure 4(c)
shows the image after the 2D rotational motion compensation in which a point scatterer
in range cell 57 is selected for focusing. All the point scatterers are focused in the
image. The situation with an assumed 3D target motion is shown in Figures 4(d)—4(f).
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Figure 4(d) shows the assumed 3D motion. Figure 4(e) shows the image after trans-
lational motion compensation. Figure 4(f) shows the final image after the 2D rotational
motion compensation. The two points in range cells 25 and 57 are focused, as expected.
Another point scatterer in range cell 99 is also focused as it happens to be in the same
2D motion plane as the point scatterer in range cell 57. However, it is not possible to
focus all the points simultaneously with an existing algorithm based on the 2D motion

model.

4. 3D Motion Detection Algorithm

Since existing motion compensation algorithms cannot handle 3D target motion, it is
desirable to develop a general compensation algorithm that can accommodate 3D
motion. However, this is a difficult task (see [13] for background on this problem)
and outside the scope of this work. Our goal here is to develop an algorithm to detect the
presence of 3D motion from radar data. If we can reliably detect those time intervals
where 2D target motions are predominant, we can use the existing 2D motion
compensation algorithms to form weli-focused ISAR images.

As discussed in the last section, 2D motion can be represented by a linear relationship
between @ and ¢. Therefore, we set out to detect the existence of a nonlinear
relationship between 6 and ¢ in our 3D motion detection algorithm. First, we write
the relationship between # and ¢ into a linear and a nonlinear part as follows:

6(tp) = bp(tp) + m(tp) (™)

where b is the linear constant and m(tp) is the nonlinear part which indicates deviation
from 2D target motion, or the degree of 3D motion. Next we try to gather target motion
information by analyzing the phases of two point scatterers on the target. Let us write
the relationship between the phase functions P; and P, of two point scatterers as:

Pz(tp) = aPy (ID) -+ n(tD). (8)

The relationship is again decomposed into the linear part, where a is the linear constant,
and the nonlinear part n(fp). Our goal is to derive a relationship between m(#p) and n(tp)
so that the presence of m can be detected by observing n.

After the standard translational motion compensation, the time-varying phase of a point
scatter is in the form of

Pi{tp) = Ayip(tp) + Azib(tp) ’ 9)

where Ay; and Az; are differential positions of point scatterer 7 relative to the reference
point chosen during translational motion compensation. Substituting (7) into (9) and then
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evaluating (9) at point scatterers 1 and 2, we have

Pi(tp) = (Ay1 + bAzy)p(tp) + Azym(tp) (10a)

Ps(tp) = (Ay2 + bAZ2 ) (tp) + Azom(1p). (10b)
We next substitute (10) into (8), which leads to

alBy) + bAz)o(tp) + Azim(tp)] + n(tp) = (Ay2 + bAz)p(tp) + Azem(tp)  (11)
Notice that if there is only 2D motion, then the phases of the two point scatterers must be

linear. This means if m = 0, then n = 0. By using this fact and equating the coefficients of
o(tp) in (11), the constant @ can be derived:

_ Ay, + bAz,
4= A+ bz (12)

By substituting (12) into (11), we finally arrive at

Ay + bAz,
Az Ay, — Ay Azy

m(tp) = n(tp)- (13)

Equation (13) states that once the nonlinear phase term n is known, it is proportional to
nonlinear motion m. Therefore, the steps to determine the degree of 3D target motion are
as follows. First, we extract the phases of two point scatterers from the radar data. Next we
find the nonlinear phase function n using a minimum least squares fit of equation (8). Once
n is known, we use equation (13) to decide on the degree of 3D motion. The remaining
issues are: (i) how to determine the phase functions of the point scatterers, (ii) how to
define the degree of nonlinearity and the degree of 3D motion once n is known, and (iii)
how to compare the degree of 3D motion from one imaging interval to another. These
three issues are discussed in the following subsections.

4.1. Phase Estimation Using Adaptive Joint Time-Frequency Projection
After the translational motion compensation, the radar signal contains only rotational
motion. To estimate the phase of a prominent point scatterer, we utilize the adaptive joint

time-frequency (AJTF) projection technique discussed in [6]. We begin with the radar data
in the (range)-(dwell time) domain. Within a fixed range cell, the data can be written as

Nr
E) =3 avep( — 22 (iplin) +20(10)) (14)
i=l1

where f. is the center frequency. Among the N, point scatterers within the range cell,
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Figure 5. (a) (Dwell time)-(Doppler frequency representation of radar signal in a range cell with three point
scatterers. (b) The basis function that is best matched to the dominant point scatterer is found by the AJTF project
method.

we express the phase behavior of the strongest one as a polynomial function:

bultn) = (it + 2+ AL +..) (15a)
and consider
h(’) = exp[—j‘pu(tD)] (15b)

as a basis for the radar signal. The phase parameters are then found by searching for the
maximum projection from the radar signal onto the basis function:

. (16)

(oot ) = arg max| [ Buo)i* @0l
Equation (16) means that the phase function parameters are estimated to give a maximum
projection from the radar data onto the basis function for that prominent point scatterer. In
the search procedure, the first term f; can be obtained by using the fast Fourier transform,
while all other higher order terms 5, f3, . . . are obtained using exhaustive search. Figure 5
illustrates the process of AJTF phase estimation. Figure 5(a) shows the radar signal in one
range cell with three point scatterers in the joint (dwell time)-(Doppler frequency) plane.
The tilted trajectory of the prominent point scatterer 1 implies there exist higher-order
terms in the phase function. Figure 5(b) shows the basis function A(tp). During the search,
we change the position (f}), tilting (/2) and curvature (f3s - - - ) of h until the projection of
h onto the radar signal is maximized.

4.2, Measure of Nonlinearity Between Two Phase Functions
We notice that in (8), the two phase functions are formulated with a linear relationship plus a

nonlinear residual part. After the two phase functions are estimated using the AJTF tech-
nique, a least-squares fitting can be performed to generate the best-fit linear part. The actual
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P,
Figure 6. Measure of the nonlinearity of two phase functions.

phases deviates from this linear relationship. The deviation # is integrated over the dwell
time to represent the degree of phase nonlinearity over the imaging interval as follows:

N|2=/ 11112(1D)‘dtD. . (17)

The process is illustrated in Figure 6. The solid line is the actual relationship between the two
phase functions P and Py. The dotted line is the linear approximation of the relationship.
The area of the shadowed region is Ny».

In a similar fashion, we define the degree of 3D motion as the deviation from a linear
relationship between 8 and ¢ over the dwell interval as follows:

M=f Im(tp)idtp. (18)
Based on (13), we see that M and N, are directly related:

Ny = BaM ‘ (192)
where

_ AZ}Ayz - Ay; Az

Pz = Ay: + bAz, (19b)

Thus by finding the observable N;5, we can obtain the degree of 3D motion M to within a
proportionality constant.
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Figure 7. Effect of the number of point scatterers used on 3D motion detection result.

43. 3D Motion Comparison among Different Imaging Intervals

As indicated by (19), the phase nonlinearity of two point scatterers N is proportional to the
degree of 3D motion M, so we can use the detected phase nonlinearity as a measure of 3D
motion. However, we notice that the constant of proportionality is dependent on the point
scatterer positions. A problem arises when we need to compare the detection result from

one imaging interval to that from another imaging interval. Since we cannot guarantee that

we track the same set of points from frame to frame, the proportionality constant can
change from frame to frame, and we cannot reliably observe M from N across frames. To
overcome this difficulty, we track more than two point scatterers within each frame and
compute N;; for each pairing of scatterers 7 and j (i # j). Then we generate an average
value <N;> from all the possible phase relationships. From (19), we have

(Ng) = (B)M. (20)

We postulate that, from a statistical point of view, <f;> approaches a constant that is
independent of frames if we average over a sufficient number of point scatterers. If this is
true, <Nj;> should become 2 good indicator of M.

We test the effectiveness of this approach on the detection result by simulation. We input a
set of motion parameters and generate the phase functions based on the 3D motion model.
20 point scatterers from an airplane model is used. We then randomly choose a number of
point scatterers and use their phase functions to compute <N;>. We examine how the
results vary as different number of point scatterers is used. We find that the results begin to
converge after about 5 scatterers. Figure 7 shows a plot of <Nj;> versus the frame number if

[N
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Figure 8. Data processing flow chart.

we use S point scatterers (10 phase pairs). If we increase the number of point scatterers to 10
(45 phase pairs), there is only minor change in the detection output. Therefore, <N;> can
be used to indicate the degree of 3D motion given a sufficient number of point scatterers.
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Figure 9. (a) Detected 3D motion from simulated radar data. (b) Degree of 3D motion from truth motion data.
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5. Results

To demonstrate the effectiveness of the 3D motion detection algorithm, we test our algorithm
on radar data from two targets. The first target is an aircraft, which flew ina large clockwise
circle during a 9-minute interval. We also have access to the target motion data through the
GPS (global positioning system) and INS (inertial navigation system) sensors carried on-
board the aircraft [14]. Figure 8 shows our processing flow chart. The GPS/INS data is used
to establish the truth target motion. The raw radar data is used as input to the 3D motion
detection algorithm. We can also generate the ISAR images using our AJTF motion
compensation algorithm [6]. We are therefore able to both compare the detection result
with the truth motion, and observe the effect of the 3D motion on the ISAR image quality.

We first test the 3D motion detection algorithm on simulated radar data. To generate the
simulation data, we use the actual motion data from the GPS/INS sensors in conjunction
with a point scatterer model. From the aircraft model, 60 point scatterers are selected to
simulate the radar data based on the actual motion data and equation (2). Five range cells are
then chosen for phase analysis in the detection procedure. Figure 9(a) shows the detected
degree of 3D motion for 20 image frames from the simulated radar data. For comparison,
Figure 9(b) shows the degree of 3D motion obtained based on the truth motion data. The
frames with significant 3D motion are highlighted with circles and the frames with 2D
motion are highlighted with diamonds. It is seen that the two results agree fairly well.

Next, we test the detection algorithm using the actual radar measurement data.
Figure 10(a) shows the detected 3D motion from the radar data over 20 frames. The
corresponding imaging interval for each frame is 2.3 seconds while the total flight duration
is 5 minutes. The four frames with the most significant 3D motion based on our detection
algorithm are labeled as circles. They are frames 6, 14, 17 and 18. Figure 10(b) shows the
degree of 3D motion obtained based on the truth motion data. We observe that the truth
motion data indeed contains a high degree of 3D motion at those four frames detected by
our algorithm.

To further examine the quality of the ISAR images when 3D motion is present, we
generate images using our motion compensation algorithm in Figures 11 to 14. Figure
11(a) shows the plot of 6 vs. ¢ derived from the truth motion data for frame 18, which is a
frame found to contain substantial 3D motion. The actual motion is shown in the solid
curve and the dashed line is the best-fit 2D motion approximation. It is clear that the curve
deviates significantly from the dashed line and the actual motion cannot be well
approximated with 2D motion. Figure 11(b) shows the resulting image obtained after
the motion compensation, and is blurred in the Doppler dimension (vertical axis). As
expected, the 2D motion compensation algorithm cannot focus all the points due to the 3D
target motion, Figures 12(a) and 12(b) show the same conclusion for frame 14, which is
another frame identified as having significant 3D motion. In Figure 13, we show the
results for frame 2, which has very little 3D motion. As we can see from Figure 13(a), the
actual motion can be well approximated by a line in the 6- plot. The image shown Figure
13(b) is well focused. In particular, the point scatterers on the target show nearly equal
range and Doppler extent, contrary to the previous two images. The aircraft body line is
clearly recognizable.




236 J. L1, H. LING AND V. CHEN

(@)

Degree
of 3D
motion o

frame no.

(b)

Degree
of 3D
motion

frame no.

Figure 10. (a) Detected 3D motion from aircraft radar data. (b} Degree of 3D motion from truth motion data.
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Figure 11. 3D motion and resulting ISAR image (frame 18).
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@) (b)

Figure 12. 3D motion and resulting ISAR image (frame 14).

From Figure 10, we notice that there exists a discrepancy in frame 11, where the
detection result does not indicate any 3D motion while the truth motion data shows 2
significant amount of 3D motion. The truth motion is shown in Figure 14(a), confirming
the presence of 3D motion. One explanation is that those prominent points used by the
detection algorithm lie nearly on a 2D plane so that they still can be focused. As we have
discussed in Section 3, the 2D model is applicable if either the motion is 2D or the target is
of 2D in extent. It is likely that the latter condition is met for this frame. This is confirmed
by the image shown in Figure 14(b). We see that the image quality is actually not so bad.
Therefore, our detection algorithm objectively reflects the quality of the images generated
by the 2D motion compensation.

A second data set is used to test our 3D motion detection algorithm. This data set
consists of the ISAR data collected from a small ship on the ocean. Because of the surface
movement of the sea, the target is believed to have considerable 3D motion during the
imaging intervals. The 3D motion detection result is shown in Figure 15(2) with the peaks
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Figure 13. 2D motion and resulting ISAR image (frame 2).




(a)

Degree
of 3D
motion

22 218 216 214 212 2t 208 206 -204 202

(@)

3 % 8 8 &

] 5

w0 15
frame no.

)

J. LI, H. LING AND V. CHEN

b

Figure 14. Frame no.11 showing focused ISAR image with 3D motion.

)

Figure 15. 3D motion detection result from radar data of a ship. (a) Detected 3D motion. (b) ISAR image from
frame 3. (c) ISAR image from frame 14. (d) ISAR image from frame 20.
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corresponding to regions with 3D motion. The total data duration is 20 seconds and the
imaging dwell time is 0.64 second per frame. For this data set, reliable truth target motion
is not available. Instead, we generate the motion compensated images shown in Figures
15(b) to 15(d) to demonstrate the effect of 3D motion on ISAR image quality. The image
frame with the largest detected 3D motion, frames 3, is shown in Figure 15(b). 1t is poorly
focused. Figure 15(c) shows the image from frame 14, which is the frame with the second
highest detected 3D motion. The frame with the smallest 3D motion based on our
algorithm, frame 20, is shown in Figure 15(d). It shows a well-focused ISAR image. This
test confirms the effectiveness of our algorithm in detecting good imaging intervals from
those imaging intervals containing large 3D motion.

6. Conclusions

In this paper, we set out to develop an algorithm to detect the presence of 3D target motion
from ISAR data. Based on the 3D point scatterer model, we first examined the effect of 3D
motion on ISAR imaging. It was shown that the existing motion compensation algorithms
could not properly focus targets exhibiting 3D motion during the imaging interval. We
then derived an algorithm to blindly detect the degree of 3D target motion from raw radar
data. It is based on measuring the linearity of phases between two or more point scatterers
on the target. The phase estimation was implemented using the adaptive joint time-
frequency technique. Examples were provided to demonstrate the effectiveness of the 3D
motion detection algorithm with both simulation and real ISAR data. The detection results
were corroborated with the truth motion data from on-board motion sensors and correlated
with the resulting ISAR images. With the detection algorithm, we have the ability to
distinguish the time intervals when the target undergoes smooth 2D motion from those
containing more chaotic 3D motion. As a result, the good imaging intervals where focused
images are more easily formed can be automatically selected.
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Use of Genetic Algorithms in ISAR Imaging of
Targets with Higher Order Motions

GMW(GA)mpWMimmﬂnﬁe
aperture radar (ISAR) imaging. GA is used for motion
MMhpb&ﬂdﬂMﬁmﬂhhmmﬁw
Joint time-frequency (AJTF) algorithm. While maintaining the
mmxy,GAhsmuwhﬂondmldy,apedany
for targets with higher order motions.

. INTRODUCTION *

An inverse synthetic aperture radar (ISAR) system
usually collects radar data from a target mwoving on .
the ground, in the air, or over the ocean. In the ISAR '
problem, the radar is stationary while the target moves
with both translation motion and rotational motion.

In the microwave frequency range, ISAR has been
identified as an effective tool for target identification
[1].

Tarpet motion is an essential part in ISAR
imaging. On the one hand, target motion is needed
to generaté Doppler (of cross-range) resolution [2].

On the other hand, unwanted motion causes image
blurring. When the target has uniform rotational
motion only and the radar data is collected over a
small angular aperture, a simple Fourier transform
will bring the raw radar data into a two-dimensional
ISAR image. However, actual targets observed by
operational radar rarely have such an ideal motion.
Therefore, motion compensation is nceded to generate
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focused ISAR imagery. There exist many different
motion compensation algorithms to deal with target
motion [3-5]. Most of the algorithms start with coarse
range alignment based on the correlation of the range
profiles. Then the phase information within one range
cell is utilized to achieve fine. motion compensation.

Phase estimation is-critical in fine motion
compensation. Compared with the amplilnde;the
phase of the radar signal is much more sensitive 0
the change in range. Based on the concept of signal
parameterization reported in [6, 71, an adaptive joint
time-frequency (AJTF) algorithm was proposed
in [8] for phase estimation of a prominent point
scatterer, In this method, the target motion is modeled
as a polynomial function and an exhaustive search
procedure is used to find the motion parameters that
are embedded in the phase of the prominent point
scatterer. While the performance of this algorithm is
~ very good [9], the main bottleneck in this procedure
is the computational complexity associated with the
parameter search. Whex the target motion is-highly
irregular, i.e., when the pumber of parameters needed
to model the motion is large, the use of the exhaustive
search becomes prohibitively expensive.

Our objective here is to reduce the computation
time associated with the motion parameter search
in the AJTF procedure. Our proposed approach is
to incorporate genetic algorithms (GA) {10] into
the AJTF search process. (Some preliminary work
on this topic was reported in [11].) In contrast
with conventional .optimization methods, GA is a
population-based, statistical search technique. It .
borrows such concepts as inheritance and mutation
from the biological .evolution process [12], As a
global optimization technique, GA is known to be
very easy to implement and applicable to many design
and inverse problems [13]. :

This paper is organized as follows. In Sections
1l and ITI, we outline the methodology. The AJTF
analysis for ISAR motion compensation is described
in Section 1L GAs are introduced in Section III.

The next two sections include results and analysis.
In Séction IV: simulations’ with ‘point scatterers

are provided to validate the use of GA for phase -
estimation. Méasurement data processing resilts are
shown in Section V. Finally, conclusions are given in
Section V1L ' ' J

I ISAR MOTION COMPENSATION USING JOINT
TIME-FREQUENCY PROJECTION

We restrict our attention here to rigid body targets
with a fixed rotational axis. We also assume that
the target undergoes only 2 small angular rotation
within the dwell interval. Under these assumptions,’

'we coasider the comventional motion assaruptions for ISAR ’
imngingimhispaper.ThoscassunmtionSm:ynotholdformoving

gmmdvehiclesorsnnllsbips.'memadaismfcnedto[ls—mnor

a detsiled discussion of those more challenging scenarics.
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a two-dimensional point scatterer model relates the
radar data to a moving target through the following

E(fatp) = zai €xp {‘j M';c—f[r (tp) + x; + )W’(tp)]}
i

. . 6))
where f is the frequency and 1y, is the dwell time. In
this model, the radar data is comprised of the sum of
responses from a collection of point scatterers. (x;, ;)
denotes the point scatterer position while o; denotes
the scatterer strength. The target motion includes both
translation motion r(tp) and rotational motion wltp)-

After range compression and range alignment to
place all the point scatterers in their correct range
bins, the radar signal through one range cell r can be
expressed in the form of ‘s

E(tp) = Z”ﬁ exp {— jM[Ar(tD) +x;+ y,:tp(x,,)]}

i . . .

c

. 2
where f; is the center frequency of the radar and @
the index includes only those point scatterers in the
particular range cell. The resicual translation motion
is depicted as Ar(tp). After such coarse alignment
procedure, the residual translation motion is smaller
than the range resolution. However, it can still be
larger than the radar wavelength. Both the residual
translation motion Ar(7p) and the rotational motion
@f1p) can be expanded into polynomial functions of
the dwell time as

M‘D) = a,tD + azt% +a3t;,.. .

3
@tp) = bytp + byth + bty ...

where any coefficients beyond the first order are
detrimental to ISAR image formation. To solve the
ISAR motion compensation problem, we need to
determine these motion parameters and to remove the
pnwanted nonlinear phase terms from the radar data.
This task can be_accomplished using the AJTF
procedure [8]. The essential idea of this procedure
is to find the basis function that most resembles the
strongest signal component in (2). For our problem,
basis function in the form of .

. 4 o
i) = exp [ ap 15+ 5| @
is used. The best basis is found by searching for

parameters fi, fo, f3,...that maximize the projection
from the radar signal onto the basis, i.e.,

Uy oo fop---) = argmax {(E, (tp). h(sp))| 6)]
where the projection is formulated as the inner
product of the two functions as

(Etp) htp)) = / E Gk @Mty © ©)
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Fig. 1. Flowchart of GA.
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In (5), the linear coefficient f; can be found efficiently
with the fast Fourier transform (FFT). Coefficients
for the nonlinear phase terms, f, f3,..., WSt be
determined through a more tirne-consuming search,
After the motion parameters of the prominent point
scatterer are found, we can carry out the translation
motion compensation by multiplying the radar data
with the conjugate of this basis. Since all the point
scafterers share the same translation motion in (2), this
operation will remove the translation motion of the
whole target. Rotational motion ¢ompensation can also
be carried out by estimating the phase of a second
point scatterer in a different range cell. After the phase
estimation, we can resample the data in dwell time to
make the phase linear [3, 4].

i, USE OF GENETIC ALGORITHMS FOR PHASE
PARAMETER SEARCH

As we have discussed in the last section;
ISAR motion compensation can be formulated
as a parameterization process for both:translation
motion and rotational motion. In [8], a brute-force - -
search procedure is employed to carry out the - .
parameterization. This means that:we exhaustively
search the solution space for the maximum: projection.
GAs-are investigated here to search for the motion .. -
rarameters o reduce the computation time. We should
point out that although a structured-tree-search is
an easy and straightforward way to decrease the
computational complexity, it does pot always lead-to
a global optimum. . - .

GA is a global optimization method based on.
concepts from ecological systems [10, 12, 14]. The
flowchart of a typical GA process is.illustrated in -
Fig. 1. It stats by setting up the paramelers for both
the physical problem and the GA ‘implementation.
GA operates on a population of many individuals.
The initial popalation is randomly generated within
the searching space. The goodness of the solution
is then evaluated based on an objective function.:
The objective function is chosen as the projection * - -
magnitude from the radar signal onto the basis
function (see (5)) (although other objective functions

4

v
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Fig. 2. Examples of crossover and mutstion operations in binary
and real-coded GA. (3) Binary-coded GA. (b) Real-coded GA.

(P ear;

'sucil as entropy can also be used). The search
is carried out in a range cell with a prominent

* point scatterer. When such a good range cell is

not available, multiple range cells can be used to
improve the GA phase estimation accuracy. If we

" are satisfied with the solution, the process is done.

Otherwise, a new generation is produced for the

next evaluation-reproduction iteration. To make

up individuals in the new generation, some good
parents are selected from the previous gencration

and two operations called crossover and mutation are
applied to produce children in the-next generation.
Whether or not crossover and mutation occur is
determined randomly. The crossover and mutation
probabilities are chosen based on the tradeoff between
two conflicting requirements. Increasing the variation
in the new generation brings a chance for better
solutions, but it tends 10 lose the features of the good
solutions from the previous generation.

Roughly speaking, there are two kinds of GA.
Ope is binary-coded GA [10]. The other is real-coded
GA [15]. In the former, the physical parameters to be
searched are first discretized into binary bits. There is
a one-to-one mapping between a physical parameter
C and its N-bit binary mmenmﬁon €15Cg.--4Cy 85 .
follows: " )

e G = Coig N in S
. C=-—Em— Y2 4 C . D
: s .

where the [Cpy;,, Cp) is the valid séarch space for C.
A candidate solution of the problem is expressedin
the form of a chromosome, which is the colléction of
bits representingall the parameters. For crossover, a
random break point in the chromosome is picked. The
bits before the poiot from one parent are combined
with the bits after the point from another parent to
form one child. Another child is generated in the
reverse fashion. For mutation, a single bit is randomly
picked and its valued is inveried. The crossover and
mutation operations for binary-coded GA are depicted
in Fig. 2(a). ’ : g <
In real-coded GA, there is no coding-decoding
process and the algorithm directly operates on
the physical parameters. For crossover, a linear -
combination is usually used as follows *'- oo
e s aR+ (- B

_ ®
C,= (-0 +ah |
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Fig. 3. GA for third-onder phase estimation. (a) Multi-modal objective function. (b) GA convergence curves. (¢) GA-cstimated phase
compared to the original trath phase.

where two children (C;.C,) are reproduced from two
parents (B, By). e is a random number between 0 and
1 to ensure that the new parameters will not fall ont
of range. For mutation, a child C that is different from
the parent P is needed. For this purpose, a solution F,
is picked up randomly from the searching space and
linearly combined with P to geperate C in the same
way as described by (8). The crossover and mutation”
operations for real-coded GA are depicted in Fig. .
2b). . :
The basic theory in GA, the schemata theory,
seems to favor the use of binary-coded GA
[14]. Most work on GA has followed this path.
Recently, researchers have also experimented with
real-coded GA and have observed some advantages
in convenience and accuracy [16]. In the next section,
we test both binary-coded and real-coded GA in our
phase estimation problem. _
The GA process is usually stopped using criteria
based on the performance of the available solutions in
the present generation. In our case, we do not know
the true maximum projection value. Therefore, we
choose to stop the GA process when the projection
value does not increase after a certain number of
generations.

IV, POINT SCATTERER SIMULATION

Point scatterer simulations are first used to test
the use of GA for ISAR motion compensation. We
first test the accuracy of GA phase estimation. In this
example, we use two point scatterers with amplitudes
1 and 0.2. They are located within one range cell
and contain third-order translation motion (i.c., the
coefficients a,, a,, and g, in (3) are significant while
all higher order coefficients are zero). We run both
binary-coded GA and real-coded GA to search for
a, and a, for this simple phase estimation problem.
The population size is 50. In both cases, the crossover
probability is 0.8 and the mutation probability is 0.3.
For exhaustive search, the search for @, and a; is
carried out on a 128 by 128 grid. We choose a 7-bit
representation in binary-coded GA and search in the
same discrete space as in the exhaustive search. The
actual objective function surface is plotted in Fig. 3(a).
We observe many local maxima, indicating this would
be a challenging problem for 4 local optimization
method. Fig. 3(b) shows the GA convergence curve,
with the real-coded GA result in solid line and the
binary-coded GA result in dashed lire. Since GA is
a statistical approach, we do not get exactly the same

346 [EEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 39, NO. 1 JANUARY 2003




' 2 3

Number of parameters -
{a)

. —

% reedGA’
' 0 binaryGA

Number of parameters
®)

Fig. 4. P«fdeAcompuedwethsﬁvem(a)Compumﬁonalcomphxityasafunaimofmenumberofpammm.
. (b) Accuracy. v

result from each GA run. To decrease the statistical
variation, the results in Fig. 3(b) are obtained by
averaging over 20 GA runs. We can see that after
about 150 generations the two projection carves .
nearly converge to the truth value of 1. We also
observe that real-coded GA produces a slightly higher
projection value. Fig."3(c) shows the resuiting ‘phase
from a single GA run after 200 generations, The
estimated phase from binary-coded GA is plotted

in circles, the phase from real-coded GA in crosses,
and the original phase function in solid line. We see
very good agreement smong the three results, meaning
good accuracy from the two GA results.

. In the second example we compare the .
computational complexity of GA to exhaustive search
for different orders of motion. As we have pointed
out earlier, the main problem with exhaustive search
for motion parameter extraction is the computational
Joad. This problem becomes more acute when the
order of the motion is high. Again, we use two point
scatterers with amplitudes 1 and 0.2. We generate
the radar data from these two point scatterers with
some preset motion. We then apply exhaustive
search, binary-coded GA, and real-coded GA for the
phase estimation problem with different orders of
motion. The same GA parameters as in the previous
example are used and the results are averaged over
20 runs. The exhaustive search is known to have an
exponential complexity of O(exp(n})). As expected,
the resulting computation time in logarithm scale
shows up as a straight line in Fig. 4(z). For GA, no
theoretical complexity formulation is available in
general. (The complexity of O(nlogn) is claimed

for selected test functions in [17}.) We run both -
binary-coded GA and real-coded GA up to sixth-order
motion (i.e., search for 5 parameters) and plot

the results in Fig. 4(a). It is observed that both
binary-coded GA and real-coded GA-have much
lower complexity than exhaustive search. The
difference in complexity between the two GAs is
only minor. The projection values from binary-coded
GA and real-coded GA are next.plotted in Fig. 4(b)
as circles and crosses, respectively. We see that the’
real-coded GA results are closer to the truth value
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of 1.0 than the binary-coded GA results, especially
for higher order motions. Since binary-coded GA
searches on a finite grid as in exhaustive search, it
can never get solutions that surpass the exhaustive
search result. On the other hand, real-coded GA has
the ability to search for any real values within the
search range. Consequently, real-coded GA has more
chance of finding a better solution. The same trend is
also observed with measurement data and is discussed
further in the next section.

V. MEASUREMENT DATA PROCESSING

We pext.apply GA on some measurement data.
The data were collected from an in-flight aircraft
using ground radar. 128 pulses are processed to form
an ISAR image. This corresponds to an imaging
interval of about 2.5 seconds. GA is evaluated for fine
motion compensation. For the first data set, the image
without any fine motion compensation is shown in
Fig. 5(a). This image is unfocused due to the residual
motion. We select a range cell with a dominant
scatterer (range cell 79) and apply GA to estimate
the phase based on a third-order translation motion
model. The resulting images from binary-coded and
real-coded GA are shown in Figs. 5(b) and 5(c),
respectively. We observe that the two GA images
are as focused as the reference image in Fig. 5(d)
obtained using exhanstive search. The corresponding
projection values are 2401 and 2595, as compared
to the exhaustive search result of 2401. We continue
this comparison using 19 other imaging intervals.
Fig. 6(a) shows the projection values (normalized
with respect to the exhaustive search result) for the 20
frames. For 19 out of 20 frames, real-coded GA gives
larger projection values than exhaustive search. The
resulting images are either on par or slightly better
focused than those obtained from exhaustive search.
For binary-coded GA, 7 frames have lower projection
values and are of inferior image quality to those
from exhanstive search. The other 13 frames have
exactly the same projection values as the exhaustive
search result. Similar to our conclusion earlier based
on the simulation data, our experience with the
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Fig. 6. Comparison of performance of GA and exbaustive search using measurement data. (a) Projection value. () Computation’ time.’
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measurement data indicates that real-coded GA™ - 10 model the translation motion. Inclusion of highér -
consistently outperforms binary-coded GA im terms order translation fhotion or ‘rotational motion doés not
of acéuracy. The computation time using Matlab codes  improve the image quality for this‘data set. -

on a Pentium T 750MHz PC is summarized in Fig. - For a second data set, we first apply third-order ' -
6(b). While there is little change in the computational  translation motion compensation using real-coded °
time for exhaustive search from one frame to another, GA. The resulting image is shown in Fig.*7(a). It

the times for binary-coded and real-coded GA exhibit is seen that the selected dominant point scatterer at '
large variations in these single Tun results due'to - range cell 64 is not well focused. This means that -
the statistical nature of GA. The average times-for the target contains higher'motion that cannot be -

the binary-coded and real-coded GA are 19.5 s and folly compensated by the third order motion-model. -
11.5 s, respectively. This is compared with the 435 This fact is also revealed by the spectrogram of the

s from exhaustive search. Finally, we note that for - compensated signal in Fig. 7(b), as .we.observe &
* these 20 frames the third-order model is adequate curved joint time:frequency (JTF) trajectory for
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the scatterer. Next, a fourth-order motion miodel is which shows: that the signal trajectory is éurved.in.the

tried and the rcal-coded GA result is shown in Fig. spectrogram. Thus rotational motion must c;;isi in this
8(a). From this figure, the reference point scatterer data; We next apply fourth-order rotational motion -
is better focused and the spectrogram of the signal * compensation using real-coded GA. As shownin

is straightened in Fig. 8(b). Fifth-order translation Fig. 9(a), the whole target is much better focused after

motion is also attempted, and the result does not show  the compensation. The spectrograms of the signal at
much improvement. However, we observe that other, both range cells become straightened in Figs. 9(b)
point scatterers in Fig. 8(a) are still. smeared. This and 9(c). While real-coded GA takes 45 s for the

is confirmed by the spectrogram of the signal at a phase estimation problem, the computation time for
different range cell (nurnber, 71) shown in Fig. B(c), fourth-order exhaustive search is estimated to be over

CORRESPONDENCE - ' S . . . - 349




FEEREYRFNEER

0 40 =

dwell time
©

Fig. 9. }Eghu-orduxuaﬁonalmﬁmcmnpmaﬁm.(a)[ma;emfontth-ordcrmﬁmalmoﬁmwmpensaﬁonmingmd-eod:dGA.
(b)Spectmgmnofsignalinnngeeella.(c)Spemogmmofsignalinnngzcellﬂ.

50 min based on the complexity curve in Fig. 4(a).
Therefore, the time savings of GA over exhanstive
search is quite significant in this real-world

- example.

VI. CONCLUSIONS

In this paper, GAs have been applied to ISAR
motion compensation. Based on the AJTF analysis,
GA is used in the phase estimation of prominent point
scatterers on-the target. The resulting parameterized
phases are then used for translation and rotational
motion compensation. Both binary-coded GA and
real-coded GA have been implemented and tested
using simulation and measurcment data. It is found
that real-coded GA outperforms binary-coded GA in
terms of accuracy in the phase estimation problem. It
is also shown that the computational complexity of the
GA search is much less than that of exhaustive search.
The time savings can become especially significant
when the target exhibits higher order motions.
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CORRESPONDENCE

Global Range Alignment for ISAR

A mew technlque is developed for range aligniment in inverse
mwmmm)mmmmmm
echoummdehdnsupﬂynﬂid,mdtheuemdmmdlhis
pdynomldmd)mtoopﬂnheagmwmﬂtymd '
mmmunkmmumwmmmmw
sdmﬂhﬂon.ndlvddsmacmmuhﬂm.lnaddlﬁon,&uhm
indteﬁmcdmniniuimplemmrdbyimmdnchmnphmermlp
hmcfnqmcydm-k;wﬁchmﬂnnmimﬁmdlmqu
Steps.

l. INTRODUCTION

Tnverse synthetic aperture radar ISAR) utilizes the
Fourier transform {o resolve the scatierers in azimuth.
Before taking the Fourier transform, translation
compensation is needed to remove the effects of the -
translation between the radar and the target in range.
Translation compensation consists of range alignment,
which shifts the echoes such that the signals from
the same scatterer are centered at the same range
bin in different echoes, and phase adjustment, which
removes the Doppler phase caused by the translation.

If no prior knowledge is available about the
translation, range alignment is usually based on the
similarity of the envelopes of the echoes. Typical
methods include the peak method [1], the '
maximum-cosrelation method [1], the frequency-
domain method [1], the Hough-transform method (21
and the minimum-entropy method [3]. : .

These methods, however, have a variety of . -
disadvantages. The maximum-correlation method, for
example, aligns each echo using the principle that
the envelope correlation of two adjacent echoes is
a maximum when they are aligned. Although more )
robust than the peak method, the method -is still -
somewhat sensitive to noise and target scintillation.
Also, it has the defect of error accumulation. In )
addition, the shift in the time domain has the
limitation of integer steps, which means that even if .
two echoes are correctly aligned, there may still be an
error of up to half a range bin.

We develop a new technique for range alignment
in ISAR imaging. The shifts made to the echoes are
modeled as a polynomial, and the coefficients of this
polynomial are chosen to optimize a global quality
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the proposed codec averagely saves 8% bit rate compared to JM3.9 with
the best settings. Complexity comparison between IM3.9 with five
reforence frames and the proposed algorithm is also analysed. The
sprite buffer can be restricted within the constant size (€.g. 2.25 times
the frame size). Thercfore the memory cost in the proposed sprite coding
is Jess than that in JM3.9. For computing complexity analysis, we only
consider the computing time of motion estimation. In JM3.9, the local
motion estimation (LME) is performed five times (i.c. once for cach
reference framc). In the proposed codec, LME is performed only once.
The rotal time of mation estimation in the proposed codec is for one
LME and one GME. By utilising the fast GME algoritbm, the total time
for LME plus GME is less than five times LME in JM3.9. Similar to the
traditional dynamic sprite coding techniques, the proposed codec has the
disadvantage that spritc warping has to boen performed in the decoder.
However, idering the signifi improvement of coding efficiency,
the extra computing complexity for sprite warping is acceptable.

58+
374
36

PSNR, dB
%

Fig. 3 PSR bit rate curves achieved from testing or Stefan sequence

Conclusions: We have presented a highly efficient algotithm for
dynamic sprite coding. The high coding cfficiency is achieved due
to two reasons. First, the new techniques developed in JVT codec arc
utilised; secondly, the fractionat resolution sprite prediction is incor-
porated into the proposed algorithm.
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Shape inversion of metallic cavities using
hybrid genetic algorithm combined
with tabu list

Yong Zhow, Junfei Li and Hao Ling

An approach combining the hybrid genetic slgosithm (GA) with the
tabu list pt is proposed ¢o i the scarch efficiency of the
hybrid GA. The algosithm is applied to reconstruct the shape of 2
metallic cavity based on the Ipswich data. 1 i

res:iashawgoudagrecmmlwﬁhﬁsmd\apemdsigniﬁm
impmwcuminoonvetg:nc:nmwubmhﬁmkaAmdhyhidGA.

Publication [3]

Inmoduction: Electromagnetic inverse scattering entails the recon-
struction of the shape or material of an object from its scattered field
data. The inverse problem can be cast into an optimisation problem
whereby the difference between the measured fields and the computed
ficlds from a forward clectromagretic solver is minimised. Genetic
algorithms (GAS) have been tried as the global aptimiser in these
problems [1-3). While GA is well suited in searching for the global
optimum, it suffers from slow convergence. Since the evolutionary
process for the standard GA to reach a cost minimum is in gencral
very slow in comparison to a local search algorithm, a natural
improvement to speed up the simple GA is to hybridise the simple
GA with a local search. This type of algorithm is usually called the
hybrid GA (HGA) and has been explored by researchers in different
disciplines [4, 5). While showing improvements in performance, the
hybridisation of thc two approaches also causes some incfficiency. As
the parent sclection scheme of GA gives priority to the best members,
it usually leads to a population that is highly clustercd around the
local minima. This clustering is necessary for the simple GA to evolve
closer to the exact minimum. For HGA, however, since the local
minima have been campletely explored by the local search, such
clusteriog will lead to the re-cxploration of these regions, which is
quite wasteful.

Tabu search (TS) is another global search strategy that has been
developed for combinstorial problems [6, 7]. it is a local search
algorithm with memory. The most important feature of TS is that it
utilises a tabu list to prevent the revisiting of local minima. ln this
Letter, we propose a technique combining HGA with the tabu list
concept to increase the efficiency of the HGA. The tabu list is adopted
to exclude those regions in the parameter space that have already been
explored by the Jocal search. In this manmner, there will be no revisiting
of the explored regions and the GA population can be spread out to
explore new regions, thus improving the search efficiency. We apply
this algorithm to the clectromagnetic inverse problem of shape
reconstruction of metallic cavity structures containing stronig tnultiple
scattering effects. Results based en the Ipswich measurement data set
arc presented.

cost function

Fig. 1 Establishment of ‘tabu region’

HGA-iabu approach: In our HGA-ubu implementation, the initial
2 jon is produced randomly. The new population is then
produced through the selection, crossover and mutation operators.
After these standard GA processes, the best member P is selected as
the iitial guess to carry out a local search. We adopt the gradient
search reportcd in [8] as the local search algorithm. The resulting
local minimum in the parameter spacc is denoted as P, (sec Fig. 1).
P, is then placed into the new GA population. In addition, a
gradient search is also carried out to obtain the local maximum
P, xx from the same initial guess in order to estimate the extent of
the local minimum. Once both local searches are completed, we defne
the region that is centred at the minimum and limited by the radius
1Paax — Prinl 25 the ‘tabu region’, and record it into a tabu list.
Symmetry around the local minimum is essumed in this construct. fn
subsequent GA reproductions, all of the new members are checked
against this tabu list to ensurc that none is in the tabu regions of the
sample space. Thus the population is forced to spread out to the
unexplored regions, vesulting in higher HGA search efficiency.
Further, @ new tabu rcgion is appended to the tabu list every time a
new local minimum is explored by local search.

In implementing the inverse problem to reconstruct the shape of a
cavity from its scattered field data, we start from a set of randomly
created shapes that are described by N ordered points in a3 two-
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dimensional space. The profile of the object is then obtained using
spline interpolation. Next, the method of moments (MoM) solution to
the electric field integral equation is used as the forward electromag-
petic solver to generatc the computed scattered field £ from each
assumed shape. A cost function is defined as the root-mean-squared
(rms) difference between £~ and the measured scaucred-field £
The HGA-tabu algorithmn is then applicd as the optimiser to minimise
the cost function. Binary-cncoded GA is used in our implementation.

Results: We have applied the HGA-tabu algorithm to reconstruct the
shape of a metallic, partially open, circular cylindrical cavity with a
diameter of 10.8cm (Ips011 in the Ipswich data set) [9). The
measurement was laken at a single frequency of 10 GHz in a bistatic
configuration. There were a total of 36 transmitter positions around
the object and 18 receiver locations for each transmitter position. The
electric field was paralle] to the axis of the cylinder.

The number of the population for GA was set to 200, the geomeiry
was described by N=15 points, and the crossover and wulation rates
were set to 0.8 and 0.4, respectively. The search arca was chosen to be
16.2 x 16.2 cm. We first tested the inversion algorithms using MoM-
simulated field data as the input. The results showed that the HGA-tabu
was able to converge to the correct shape after an average of 75
generations and the final shape was in excellent agreement with the
actusl shape. In comparison to the HGA, the HGA-tabu aiso showed an
improvement of about {00 generations for convergence.

0.9
....... random search
\.\___\_-.‘ simple GA
e
e b
T 2 A :
100 150 200 20
munber of ferations

Fig. 2 Convergence comparison Sfor inversion of ipsvll for random
search, simple GA, HGA and HGA-tabu

sses real shape
— HGA-tabu result
e b

Fig. 3 Ips0i] inversion results from measured data

a Typical inversion result by simple GA
b Typical inversion result by HGA-tabu

Next, we applied the inversion algorithms to the actual measured data
for IpsO11. Fig. 2 shows the convergence comparison between random
search, simple GA, HGA and HGA-tabu. All the results were averaged
over 10 independent runs with different jnitial populations. As

the simple GA showed improvement over the random
search. The HGA firther improved the convergence mte of the
simple GA. The best results were consistently obtained by the HGA-
tabu. To achieve an rms of 0.55, the HGA required an average of 220
generations while the HGA-tabu algorithm required only an average of
75 generations. (We note here that, duc to the difference between the
numerical modelling and the measurement, the rms emror between the
MoM-computed ficlds from the exact shape and the measured ficld data
is 0.73.) Fip. 3a shows the typical shape from the simple GA after 250
gencrations plotted against the seal profile of the cavity. The result

indicates that more itcrations arc needed for convergence. Fig. 3b shows
the typical reconstructed shape from the HGA-tabu afier 75 genera-
tions. As we can sce, the inverted shape is very close to the real profile.
The overhead of implementing the gradient search in cach generation is
about 10% of the total computation cost. The time for the tabu list
check is negligible, as there is no cost function evaluation.

Conclusion: An approach combining the hybrid genetic algorithm
with the tabu List concept has been proposed in this Letter. The tabu
Jist was set up to increase the search efficiency by forbidding revisits
of local minima alrcady explored by the local search. The algorithm
has been applied to reconstruct the shape of a metallic cavity based on
the messured Ipswich data. Inversion results from the HGA-tabu
showed faster convergence and higher success rate than those of the
simple GA and hybrid GA. The computation overhead per generation
for the new algorithm was small, The algorithm could potentially be
useful in other optimisation problems.
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Publicly verifiable authenticated encryption
Changshe Ma and Kefei Chen

A new suthenticated encryption scheme with public verifiability is

P d. The oew sch q less p I costs and
communication overhead than the jonal signature-then

jon approaches. Furth the ge is not divulged
during the public verification. .

Introduction: Secure and authenticated message deliver/storage is
one of the major aims of computer and communication security
rescarch. Horster, Michels and Petersen (HMP for short) [1] proposed
an efficient authenticated encryption scheme with lower expamsion

ELECTRONICS LETTERS 6th February 2003 Vol. 39 No. 3 281




4 KAGAWA,K, et al.: ‘Pixel design of pulsed CMOS image sensor for retinal
prosthesis with digital photosensitivity control’, Electron. Lext., 2003, 39,
p. 419

5 SHEN, C. ef al.: “Improved SOI image sensor design based on backside
illumination on silico pphire (SOS) sut *. TEEE Int. SOI
Conf., Williamsburg, VA, USA, 2002, pp. 73-74

6 STETT A, ef al.: ‘Electrical muhtisite stimulation of the isolatcd chicken
reting’, ¥isi Res., 2000, 40, pp. 17851795

Sparse parameterisation of electromagnetic
scattering data using genetic algorithm
with adaptive feeding

J. Li, Y. Zhou and H. Ling

A method is presented 1o p ise scattering data from complex
wgm.Bamdonaglobalnwddwhhbahsumﬁmmatﬂ

Publication {4]

process. To overcome this, a isation based on a community
GA with adaptive feeding is devised. Fig. | iltustrates the approach in
extracting M scattering and N Each solid box
represents a community [10] using a different parameterisation order
number. For example, the highest order uses M scatiering centres and N
resonances while the lowest order uses one scattering centre and no
resonance. The parameterisation consists of an iteration process as
follows. First, for each community, standard GA operations including
selection, crossover and mutation are uscd to reproducc members in the
next generation for better solutions. Secondly, at the end of each
generation, the residual signal of each communily is calculated as the
error between the best solution in the community and the original data
E™(f) and is parameterised with GA. The order number for residual
parameterisation is specified in the dashed box. It is the difference
between the order number of the current community and the next higher
community. Thirdly, the parameters from the best solution of a lower
ordercommunitymditsmeidueamcombinedtofomaeandidau
solution in the next higher order cammunity. A zero-mean Gaussian
perturbation is addcd during this swp to crcate a community-level

jon. By adaptively feeding the solutions from the lower order

resonances, a genctic algorithm with adaptive feeding is proposed for 8
mm‘m&mtwmmmm
shows better pecformance than nosi-global parameterisation methods.

Introductinn: Obtaining a sparse, physical representation of electro-
magnetic scattering data from a complex target is a problem of
fundamental importance in radar signature analysis {1-9]. The scat-
tering centre model is the standard way to represent scattering from
large targets and has been used with success by the radar signature
community for. over two decades. Many techniques including super-
resolution [1, 2], CLEAN {3], genetic algorithms (GA) [4-6) and
evolutionary programming-based CLEAN [7] have been reported for
determining model parameters based on the scattering centre model.

For targets containing convex, interior swructures such as cavities, a
model combining scattering centres and resonances has been shown to
be a more efficient and physically meaningful representation of both

" exterior and interior scattering featurcs [8, 9). However, finding the

model parameters in such cases is more challenging, since the scuttering
centre and resonance bases have complementary behaviours in time and
frequency. In (8], a CLEAN-based algorithm was used to extract one
scattering centre and/or resonsnce at a time jtcratively. In [9], Prony’s
method was first used to extract all the scattering centres and then all
the resonances. One drawback of these methods is thet the parameteri-
sation results are mot very sparse since the scattering centres and
resc are not ex d simultaneously.

“fo improve the sparsity, we prescat in this Letier a global algorithm
to parameterise complex scattering data using the combined scattering
centre and -resonance model. The method is based on a GA with
adaptive feeding. The latter is devised to compensate for the disparity
in strength between scattering centres and resonances and improve the
performance of the GA.

GA with adaptive feeding: The scattering model is assumed to
comprise responses from both scattering centres and resonances as
9%

=% o | ¥ 1

BN = Lol 4 Doy o+ B,
where M and N are the number of scattering centres and resomances,
rcspcctively,andftheﬁequency.Foreachscatmingom'e,t,isﬂse
time delay, a,, the frequency dependency coefficient and gy, the
complex amplitude. For cach resonance of complex amplitude by, f,
is the resonant frequency, t, the tum-on time and f, the O-factor. The
parameterisation process.can be formulated as a minimisation problem:

{a-' tmvj;n ﬂnv T.) = axgmm HEU-) —E'(f)“z (2)

where E™ denotes the measurcment data to be parameterised. The
amplimdesa,,andb.mnotinchndedinﬂnbmcketasmeymbe
derived from other unknowns using minimum least squares fitting.
GA has been used in many engineering applications as a global
optimisation scheme. However, here we find that the standard simple
GA (SGA) has difficulty in converging to the desired global optimum.
Since the energy in a resonant term is typically much lower than that in
a scatierer centre, the resonant terms are easily missed in the SGA

Pz Al )

communities forward to the higher order communilies, the convergence
of the highest order commmity is significantly accelerated without
sacrificing the optimality of the final solution.

L - M.N \J
[ MmN 1.0}
{o]
A .
e Jine
/’ ooy
1,0l 01!

Fig~ 1 GA with adaptive feeding
Best sohution from lower order community (solid box) and residue (dashed box)

combined and fed into next higher-order community. Convergence of highest
order community with A scattering centres and N resonances accelerated

205 10 20 30 40
order number

Fig. 2 Comparison of three parameterisation results of VFY 218 measure-
ment data

————— CLEAN with scatfering centres only

————— CLEAN with scsttcring centres and resonances

GA with adaptive fecding

VYF 218 measurement data results: The algorithm was first tested
using numerical simulation data from a well-understood target, a plate
with a partially open cavity {9]. The proposcd mcthod successfully
extracted the four dominant scattering centres and three resonances
with a 5% RMS error. By comparison, the RMS emor fiom the
CLEAN method is 10% after 20 terms, while the SGA always missed
the weakest resonance. We next applied it to the VFY 218 measure-
ment data {11]. The scattering data came from 'a 1:30 scale model
aircraft using horizontal polarisation in the 8 to 16 GHz frequency
band. The look angle was at 19.6° from nose-on so that the inlet
contribution was prominent in the return, Fig. 2 shows RMS crror
against total model order number (M +-N) for three different meth-
ods. The GA resulls were averaged over six runs. The CLEAN curve

1104 ELECTRONICS LETTERS 24th July 2003 Vol. 39 No. 15




with scattering-centre-only model decreases very litile after 30 terms,
indicuting this model is very incfficient in modelling the resonance
part of the data after the scattering centres arc extracted, The CLEAN
curve with both scattering centre and resonance model is better.
However, the ratc of comvergence still slows down considerably
after the fimt 18 terms. The GA curve shows the best sparsity. It
requires only 20 terms to achieve the samc accuracy s the CLEAN
approachwithwtems.ThemodzlordersusedhmeGAmMn 14
and N=6. However, we found (hat the results were not very sensitive
1o the model order selection.

3
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Fig. 3 Accuracy of parameterisation in time and frequency domains
a Time domain
b Frequency domain

To further interpret the physical significance of the GA-purs-
meterised data, we corrclated the cxtracted scattering centre positions
wiﬂndxepmksinmetargﬂmxgepmﬁleandfoundmatﬂxeyﬁnedup
well. Funhmnme,thetwommmmonmccsmctedmat
ﬁ-equenciesof9.8mdll.3GHz.Thisisoonsistcntwiﬁ:thcsbeof
the ¢ gul __v;inlet,'p,whichhxvedimcnsionsof
2.5 x 1.5 cm. (The cutoff frequencies of the TEq and TE;; modes
are estimated at 10 and 11.7 GHz, respectively) The other four
resonances at 8.6, 9.1, 9.4 and 13.3 GHz are hander to interpret given
the complex shape of the actual inlet structure.

Comparisons of the parameterised result with the original measure-
mcntdmhthetimemdﬁequcxwydmnainsm:howninﬁg.l\\'e
seefairlygoodagannmsbetweenﬂ:etwo.Wewspecllhesumﬂ
pmmnamsnﬁonmonobeduewdaemodclmismmhof(l)wme
complex measurement data. Thus, increasing the model order for this
data does not reduce the error significantly. We also processed data from
0° to 180° from nose-on in 5° increments, and found the GA with
adaptive feedingwoonsishcmlymtperfomCLEANataﬂ angles.

Conclusions: We have proposed a GA-based method for parameteri-
sing scattering data from complex targets. Based on a global model
with both scattering centres and resonances, our method uses GA with
- the adaplive feeding ides to simultaneously extract all the model
parameters, The proposed method can achieve sparser results than
other non-global based methods. The effectiveness of the proposed
method is demonstrated using the VFY 218 measurement data. The
resuiting sparse model facilitates target feature interpretation and can
be unsed for signature reconstruction in modelling and simulation
applications. .
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400 mW uncooled MiniDIL pump modules

S. Mohrdiek, T. Pliska, R. Bittig, N. Matuschek,
B. Valk, J. Troger, P. Mauron, B.E. Schmidt,
LD. Jung, C.S. Harder and S. Enochs

Amwgcncmﬁonofw:velengthmbﬂiscd.unmohd%Onmpump
dules in MiniDIL housings is p d, enabling 400 mW ex-fibre

power over a temperature range of 10°C to 70°C. At 100°C 200 mW

puwerissﬁllowinedwimambustﬁbtcmuplingsdlme.

Introduciion: As the focus in optical telecommunications systems
turns more towards affordability, there is a push to produce EDFAs of
lower cost, smaller size and less power consumption. Operation of
980 nm pump modules without & thermo-electric cooler (TEC) has
been presented in [1]. The removal of the bulky and power-consuming
TEC allowed us to develop pump modules in a smaller, less expensive
MiniDIL housing. Though low cost is crucial, performance and
reliability comparable to con al Butterfly-type modules has to
be demonstrated, in order to satisfy the yct stringent requirements for
metro systems.

In this Letter we present results of 550 mW fibre coupled power at
25°C, 400 mW at 70°C and 200 mW at the extreme temperature of
100°C, with MiniDIL. modules incorporatirg the latest developments in

mp laser devices [2, 3] and wavelength stabilisation by fibrc Bragg
gratings (FBGs) [4]. Litde change in fibre coupling efficiency with
temperature d the rot of the fibre alignment scheme.
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Application of adaptive chirplet representation for
ISAR feature extraction from targets with rotating

parts

J. Li and H. Ling

Abstract: The problem of feature extraction from inverse synthetic aperture radar (ISAR) data
collected from targets with rotating parts is addressed. In traditional ISAR imaging, rigid-body
motion is usually assumed. When non-rigid-body motions are present. it is not possible to obtain a

focused image of both the target and the rolating
parameterised using the adaptive chirplet signal

part. To solve this problem, the radar signal is first
representation. The signal from the body and that

from the rotating part are then separated in the parameter space. Point-scatterer simulation results
show that better geometrical features of the body and better micro-Doppler features of the rotating
part can be extracted after the separation. The algorithm is also demonstrated using the
measurement data from an in-flight aircraft and a walking person.

1 Introduction

Recently, there has been increasing interest in studying the
so-called micro-Doppler phenomenon [1, 2] for radar target
identification applications. Micro-Doppler is used to
describe the fine Doppler feature from some moving part
on the target that is different from the main body Doppler
feature. In most of the conventional work on inverse
synthetic aperwire radar (ISAR) imaging, the target is
assumed to have rigid-body motion {3, 4]. However, non-
rigid-body targets can often be found in real-world
situations. As a simple case, a target may consist of a
main body and a rotating part. For example. an in-flight
aircraft with jet engine rotation. a ship with scanning
antenna motion and a ground vehicle with spinning tyre
motion all involve this type of configuration. Under these
conditions, difficulties in understanding the resulting ISAR
image arise due to the violation of the rigid-body
assumption.

In this paper, we set out 10 extracl better target features
from ISAR data when a target has a rotating part beside the
main body. The challenge is that the body image is
contaminated due to the interference from the rotating
part. It is also more difficult to extract the motion
information from the rotating part as it is overshadowed
by the body returns. Our approach is to first parameterise the
radar signal using the adaptive chirplet representation [5, 6.
The chirplet basis is a four-parameter function localised in
the joint time—frequency plane. While both Gaussian [7]
and chirp-type [8] bases have been reporied for joint
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time—frequency processing of ISAR data, the chirplet basis
is selected to represent the radar signal in this paper. Since
both amplitude modulation (AM) and frequency modulation
(FM) are part of the basis, the chirplet can more efficiently
represent the radar signal from a target with a rotating part.
With the adaptive chirplet representation, different motion
behaviours of the target components are mapped into
different parameters of the corresponding bases. Conse-
quently, the returns from the body and the rotating part can
be more easily scparated. After the separation, better target
featurc extraction can be realised by processing the two
parts individually. This includes both the extraction of the
geometrical features from the main body and the micro-
Doppler features from the moving part.

In the following section, we present the model and
formulation of the problem. After a close examination of the
point-scatterer signal model of a target with individual
motions, we show that the chirplet basis is well suited for
parameterising and separating the rotating part signal from
the main body signal. The chirplet-based adaptive signal
representation algorithm is tested with point-scatterer
simulation data and results are shown from two sets of
measurement data. The first data set is from an in-flight
aircraft with jet engine rotation motion. The second data set
is from a walking person with arm swinging motion.

2 Signal model and formulation

2.1 Point-scatterer model of radar signal from
target with rotating part

The point-scatterer model is usually used in radar imaging
to model the radar signal scattered by an unknown target.
In this model, the radar return signal is expressed as a sum
of point-scatterer responses

M dnf ’
E(f’ I) = ZUHI exp {_jT [Rlll(’) + xl" cos 0", (1)

m=]

+ ¥ Sin 0,,(1 )]} . Q)
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where the radar signal E is a two-dimensional function of
transmitting radar frequency f and pulse dwell time 1.
The target consists of M point-scatterers, each with position
(¥» ¥mr) and complex scattering coefficient o, Suppose the
radar is stationary, the targel motion is described by the
translation motion R,,(r) and the angular motion 6,,(1) for
each scatterer.

A rigid-body target is usually assumed in traditional
ISAR imaging. i.e. all the point-scatterers in (1) share the
same translation motion R,, (1) and rotational motion ,,(1).
Here, we shall consider a non-rigid-body target consisting of
two parts, a main body and a rotating part. In this case, we
can simplify the model in (1) by using different motions for
the two parts while still applying the rigid-body assumption
for each part. This leads to

E(fs’) = EB(.[? ’) +ER(f) ')

M 4
= > oo {2 Ral0)+ 5u05 00

m=I

\
+visin 0501 + 3 anesp {5 Ry()

4%, 008 Og(r) + ¥, sin eR(z)l} @

with subscripts B and R denoting the body and the rotating
part, respectively.

Both the main body and the rotating part move with -

respect 1o the radar. The difference is that the rotating part
has an additional rotation motion beside all the motions of
the main body. For the main body, during the imaging
interval we can apply the small-angle approximation usually
used in ISAR imaging. That is

cos Op(1) = 1

sin 85(1) = 05(1) (3)
We also assume that a standard motion compensation
algorithm [4, 9, 10] has been utilised to remove both the
translation motion and the nonuniform rotational motion
from the body, after which we can write

Rﬂ(') —0
{ 05(1) +— wpi (4)

where @y is the effective body rotation rate after the motion
compensation. The arrow symbol above is used to indicate a
new assignment of the variable on the left afier the motion
compensation operation.

For the rotating part, the motion relative to the main body
is rotation only. This implies that the rotating part has the
same translation motion as that of the body while the
rotation motion will change accordingly, i.e.

{RR(’ )0

| 0p(1) +— 6k() O
However, the small-angle approximation does not hold for
the rotating part. Since its rotation rate is usually much
larger than that of the main body, a rotating scatterer might
undergo many cycles while the main body rotates only a few’
degrees during the imaging interval. Substituting (3)—(5)
into (2), we have '

Moo Am
E(f,1) =Ea,,, exp {— ]-?f"[.l‘,,, +¥m wBt]}

m=1

n=1
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which is the radar signal from a target with a rotating part in
the two-dimensional (frequency. dwell time) domain after
motion compensation of the main body. Since it is more
efficient to process range compressed data, we Fourier
transform (6) with respect to fand bring the radar data into
the (range, dwell time) domain. The radar signal through a
fixed range cell r is given by

M
Er(l) = Z Om .ﬁm'Sinc [‘2“#“ (I' - .X‘m)]

m=1
A,
X exp {"H _('[_ (" =Xy ."m(')BI)}

2m)

N
+ Z O i SINC {—(—ﬁ—"l [r = x, cos Bk(r)
n=1

 yusin 8501 pexp {47721 = 5,008 640)

_ 5,sin ok(r)}} @)

where f,. and f,, are the carrier frequency and the bandwidth
of the radar, respectively.

Some observations can be made here about (7). There
exist substantial differences between the main body signal
and the rotating part signal. Each body-scatterer in the first
term has constant amplitude o,, and constant Doppler
frequency —(2f,/c)wpy,, with respect to 1. However, the
signal of each rotating scatterer in the second term contains
both AM and FM components. This can be seen by the
presence of the time-varying function B5(1) in both the sin¢
and the exponential terms. Consequently, a second Fourier
transform of (7) with respect to ¢ will focus the target body
in cross-range, but not the rotating part return. This results in
the observed interference from the rotating part in the ISAR
image.

2.2 Chirplet basis
The chirplet basis function [5, 6] is well suited for
parameterising the AM—FM radar signal in (7). A chirplet
is a four-parameter basis of the form

l

()= (2) exp-outr— ) erp (21

O

—jmB(t— 1)’} ®)
where 1, is the time centre of the signal, f; is the centre
frequency, f; is the frequency modulation rate and oy
defines the time extent of the signal. The joint time—
frequency plot of a chirplet function is illustrated in Fig. la.
Actually, the chirplet basis is one of the many options that
can be used to model the radar signal accurately. However,
there are some attractive attributes of this basis. First, the
basis function is an AM—FM signal and only a sparse set of
these bases is needed to approximate the time~frequency
structure of the radar signal in (7). Secondly, the chirplet
basis is a well understood basis with only four parameters.
Only moderate computation time is needed to search for
the basis parameters. Thirdly and most importantly, the
parameters of the chirplet can be used to’separate the two
components of the signal. This is because signals from the
main body and the rotating part are captured by chirplet

bases with different parameters. . :
To see this more explicitly, let us assume a first-order
rotational motion in the time neighbourhood of each chirplet

Ox(1) = 6. + wg(t - 1,) C))
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Doppler frequency

Fig. 1 Chirplet basis and chirplet parameters

« Joint time—frequency representation of a chirplet basis

b Distribution of chirplet parameters for the main body (solid) and rotation
parts (dotted) and separation thresholds ( dashed)

where 6. is the angle at the time centre. The rotating part is
assumed to have a constant rotation rate g during the time
interval near 1, although it could have more complex
motions during the whole imaging interval.

After substituting (9) into (7). we take the first and second
derivatives of the phase term with respect to and compare
them to those from (8) 10 arrive at expressions for f; and S
The results can be writien as

ﬁ. == gl'[f'(”R[-\‘u sin (’)R(’ - 'k) - ¥, COS wR(I - ’A‘)]
¢
= — g{;;[,,(l)k sin [(V)g(l - ’k) - i:,,] (]0(1)
ﬁk = —Z{iln"):lzi cos [(')R(’ - ’k) - ‘:n] (th)

where (/,,, C,)) are the polar representations of (x,,,). Itcan
be seen from (10a) and (10b) that the parameters f and 5
are distributed along an ellipse as follows:

£, B _ (zf_) )

(ln(')R)2 (I,,(U%)l ¢

where the size and the axial ratio of the ellipse are controlled
by wg and [,. Similarly. the equation to associate the
chirplet parameters with the main body signal is given by

B —(Zfﬁ)' (12)

(ImU)B)2 (Imw;})z NG

where the scatterer radial length /,, and the rotation rate g
are used for the main body.

Even though (11) and (12) have exactly the same form,
the main body and the rotating part arc separable in the
parameter space because of their different motions.
Essentially, while the sizes of the two parts are comparable.
the rotating part rotates much faster than the main body
during the imaging interval, ie.

R > wy (13)

286

Consequently, the chirplet parameters i and B; for the main
body and the rotating part are distributed very differently in
the parameter space. A rolating part scatterer is represented
as a larger and rounder ellipse while a body-scatterer is
represented as a smaller and flater ellipse. Actually. the
ellipse for the main body is nearly a line segment on the

Ji axis since the first term of (7) is assumed to have zero

Doppler rate. The different distributions of the chirplet
parameters are illustrated in Fig. 1b, where the outer ellipse
represents the rotating part signal while the inner one
represents the main body signal. A simple criterion to
separate the two parts can thus be defined; the body signal
has small f; and f; while the rotating part signal has either
large f; or By.

Another interesting observation we can make from the
above discussion is that the main body and the rotating part
signals have large overlaps in fy. while they have liule
overlap in ;. Therefore, the Doppler rate is more important
than the Doppler frequency in separating the two signal
components. This point will be further illustrated by
examples later.

To summarise, if we parameterisc the radar signal in
question into a set of chirplet bases. it is possible to separate
the contributions from the target body and the rolating part
based on the parameters of the chirplet bases. as we have
discussed above.

2.3 Signal separation based on adaptive
chirplet signal representation

To decompose the radar signal into a set of chirplet bases,
we apply the adaptive signal parameterisation algorithm
[11, 12]. We start with the radar signal in a fixed range cell
with returns from both the body and the rotating part. which
is labelled as E,{7) in (7). Next, we parameterise E,.(1) by
projecting the signal onto chirplet bases of different
parameters and find the one with the maximum projection
value. Next. a residual signal is generated by subtracting the
contribution of the just-found basis from the signal. This
process is then iterated to generate a series of chirplet basis
functions that. when summed, can approximate the original
signal. The steps are summarised below:

Step 1. Set iteration index number & to | and the residual
signal R (1) to E,(1)

Step 2. Find the kth chirplet h(r) by maximising the
projection from the residual signal R, (r) onto the basis, i.e.

{1k i 0o B} = g max [(Re@ D] (14)

where the inner product is defined as

wmmm=fmwwm (15)

0

The radar data are assumed to exist over the time interval t,
1o 1,. The coefficient of the chirplet is the corresponding
projection

= (R0 ) (16)

Step 3. Subtract the extracted signal from the residual
Ryt (1) — R (1) — i (D) (17

Step 4. Increment k by one and repeat steps 2 and 3 until &
reaches a preset number or until the energy of the residual
signal is below some threshold set based on the signal-
to-noise ratio. Suppose N chirplets are found from this
procedure, the radar signal is parameterised as :
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(18)

After the parameterisation of the radar signal, the body
signal can be separated from the rotating part signal using
the criteria discussed previously. We classify those chirplets
with small f; and §; as the main body components and the
chirplets with either large f; or large B, as the rotating part
components. The final body-only signal and the rotating part
signal are assembled from the corresponding chirplet bases
according to (18).

Following the separation, we can process the main body
signal and the rotating part signal individually for better
information extraction. Based on our discussion about ( N,
for the target body the feature of interest is the geometrical
information in the ISAR image. A better body image can be
reconstructed after removing the rotating part componcnts.
For the rotating part signal, it may be impossible to also
construct a focused image of the rotating part if the PRF of
the radar is too low. However, it is possible to extract useful
information about the motion of the rotating part from the
separated data.

3 Point-scatterer simulation results

We first test our algorithm with point-scatterer simulation
data. Six point-scatterers are used in the simulation with five
points representing the rigid body and one representing the
rotating part. The positions and the strengths of the six
scatterers are shown in Fig. 2. Scatterer 6 rotates around
scatterer 2 at a rate of 6.67 Hz and a rotation radius of 20 cm.
We assume the radar has a 10GHz centre frequency,
800MHz bandwidth and 1400Hz PRF. The target body
rotates about 4° over 384 pulses during the data collection
time.

Simulated radar data are generated using the point-
scatterer model in (6). The resulting radar image is shown
in Fig. 3. The three point-scatterers in the centre range
cell are shadowed by a noisy vertical micro-Doppler band
due to the motion of the rotaling point-scatterer. Our
objective is to reconstruct the five body-scatterers and to
estimate the rotation rate of the rotating scatterer from the
radar signal.

Different behaviours of the body and the rotating
part are better identified in the joint time—frequency

10
.
% A
€° '
y g
0 4@ € 5GF
& ]
-10
'-10 (1] 10
X

Fig. 2 Point-scatterer representation of the original target
consisting of five rigid points (1-5) and one rotating point (6)
with strengths 2. 5. 2, 1, 1, and 3.33. respectively
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Fig. 3 Simulated ISAR image of the 1arget with non-rigid-body

motion
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Fig. 8 Spectrogram of the radar signal through range cell 65

domain. The spectrogram obtained from the short-time
Fourier transform is shown in Fig. 4 using the data in range
cell 65, which contains responses from scatterers 1, 2, 3
and 6. In this Figure, we see interesting features about the
target. First, there are three horizontal Doppler lines. The
one al zero Doppler is due to scatterer 2. The two at
+100Hz are due to scatterers 1 and 3. Secondly, there is a
sinusoidal-like micro-Doppler curve due to the rotating
scatterer 6. Amplitude modulation of this signal is also
observed. .

Following the steps in Section 2.3, we first parameterise
the signal using N = 100 chirplets. The spectrogram of
the resulting parameterised signal is shown in Fig. 5. We
see fairly good agreement between the original signal and
the parameterised signal. Next. we separatc the contri-
butions from the static and dynamic parts of the target
based on the Doppler frequency f; and the Doppler rate B
of the chirplet bases. A simple threshold of 3200 Hz/s on
the Doppler rate and 300 Hz on the Doppler frequency is
used to discriminate the static and dynamic part of the
target. The spectrograms of the resulting radar signals are
shown in Figs. 6a and 6b for the rigid body and the
rotating part, respectively. We see that the body with
nearly constant Doppler and the rotating part with fast
changing Doppler are separated.

We use the same procedure 10 parameterise and
separate the radar signals from range cells 60 to 70.
After removing the rotating part interference, the final
ISAR image is shown in Fig. 7. The five scatterers of the
static body are now correctly focused. To obtain more
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Fig. 5 Spectrogram of the parameterised radar signal using

100 chirplet bases
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Fig. 6 Separated body and rotating part signal

« Spectrogram of the three main body scatterers
b Spectrogram ol the rotating part

information about the rotation motion, an autocorrelation
analysis of the separated rotating point signal is shown in
Fig. 8a. The period of the rotation motion is determined to
be 0.15s from this Figure. This agrees with the true
rotation rate of 6.67 Hz. For comparison, the autocorrela-
tion of the raw radar signal before separation is shown in
Fig. 8b. It is difficult to detect the periodicity from the
plot as the rotating scatterer signal is heavily contami-
nated by the large body return.
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Fig. 8 Rotation rate estimation using anlocorrelation

« Result from the rotating part signal after separation
b Result from the original signal before separation

4 Measurement data results

The algorithm is next applied to two sets of measurement
data. The first data set is the radar data collected from an in-
flight aircraft during the frontal view of the target. The
second data set is the radar data collected from a walking
person. In both cases, the goal is to separate the main body
signal from the rotating pant return for better target feature
extraction.
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4.1 Jet engine modulation removal from an
in-flight aircraft

The geometry of the problem is shown in Fig. 9. The radar
collects backscattering data from an in-flight aircraft. The
resulting ISAR image obtained using a joint time—
frequency based motion compensation algorithm {97 is
shown in Fig. 10. We observe a vertical noisy band due to
the rotating engine blades, which is the well known jet
engine modulation (JEM) phenomenon [13]. The geometry
of the aircraft body is obscured due to the presence of the
JEM lines.

Simple Doppler gating is typically used to alleviate this
problem. The result in Fig. 11a is generated by putting zeros
in cross-range cells 1-32 and 62~128 in the image area
with JEM lines. The high Doppler frequency components in
the jet engine return are removed in this manner. However,
we see that in areas where the JEM lines overlap with the
target image, this technique does not work well. as it cannot
distinguish the aircraft body signal from the JEM signal
with low Doppler frequency.

Using the chirplet-based adaptive signal representation,
we first paramelerise the radar signal. Figure 115 is the
reconstructed ISAR image using a separation criterion
based on J; only, i.c. we remove those chirplet bases with
large B, from the parameterised signal. It is much better than
Fig. 11a in revealing the aircraft body feature. This confirms
our previous observation that the Doppler rate is a better
discriminator than the Doppler frequency in separating the
two signals. Finally, we use both B, and j; to separate the
two signals. The aircraft body image reconstructed from
chirplet bases with both small B, and small f; is shown in
Fig. 1 1c. We see an even better representation of the aircraft

100

S
3 & 8 8

cl

Fig. 11 Aircraft body and JEM line separation

« Body ISAR image with Doppler frequency gating only
b Body 1ISAR image with Doppler rate gating only

¢ Body ISAR image based on both Doppler frequency and Doppler rute parameters

d Separated JEM signal

IEE Proc.-Radar Sonar Navig.. Vol. 150, No. 4, August 2003

289




body feature in the JEM region. The JEM signal is also
displayed in Fig. 11d. The signal is aliased because of the

Jow PRF of the radar in comparison with the rotation rate of

the engine blades. This example shows that this algorithm
works despite the strong Doppler aliasing of the rotating
part signal.

4.2 Arm swing rate estimation from a walking
person

The second data set is the measured radar data collected
from a walking person. The geometry of the problem is
shown in Fig. 12. Two types of motions are involved; the
iranslation motion of the person’s body and the swinging
motion of the arms (or legs). Figure 13 shows the range
profiles after coarse range alignment using amplitude
correlation. Due to the limited range resolution relative o
the target size, it is very hard 1o discern any useful features
about either the body or the arms in this Figure. Figure 14 is
the spectrogram of the radar signal through range cell 32.
Interesting target features are revealed in this Figurc. The
horizontal Doppler line is due to the body motion as the
person walks at a relatively constant speed during the 1.28s
dwell interval. The sinusoidal-like curve shows the micro-
Doppler phenomenon from the swinging arm motion. The
Doppler spread is caused by the varying speed of the arm
and the changing angle between the instantancous swinging
motion and the radar incident wave. We also observe the
periodicity of the arm motion.

To separate the body and the arm returns, the adaptive
chirplet representation is applied. After the parameterisa-
tion. we again separate the body return from the arm return
by classifying those bases with large Doppler frequency fi
or large Doppler rate f; as contributions from the arms. The
spectrograms of the separated body and arm signals are
shown in Figs. 15¢ and 15b, respectively. The main features
of the target are kept after the separation. indicating good
accuracy of the parameterisation. We also observe a
significant denoising effect from the parameterisation.
This is because noise in the measured data does not have
the time—frequency characteristics of a chirplet and it is left

Fig. 13 Radar data after range compression
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in the residual signal afier the parameterisation. The arm-
swing period can be easily estimated from the arm-only data
by taking the autocorrelation of the time sequence. The
peaks in Fig. 16a correspond to the period of the signal,
which is found to be 0.44 5. Based on this swing rate and the
speed of the person (2.3 m/s) estimated from the same radar
data. the stride size of the person is determined to be about
1.0m. For comparison. we have also generated the
autocorrelation of the original data without the joint
time—frequency processing (Fig. 16b). 1n this case.
the radar return from the arm is overshadowed by the body
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return and the peaks in the autocorrelation function are
significantly less pronounced.

Finally, we note here that only a simple exhaustive search
has been implemented to carry out the chirplet decompo-
sition in our examples. In the walking person example, the
decomposition of a signal with 1024 data samples into
50 chirplets took 1050s using MATLAB on a personal
computer with a 2.26 GHz Pentium 4 CPU. A fast
implementation of the chirplet decomposition has recently
been reported in [14] and should speed up the processing
significantly.

5 Conclusions

In this paper, a chirplet-based adaptive signal representation
algorithm has been applied to extract features from ISAR
data of a target with a rigid main body and a rotating part.
Because the micro-Doppler feature of the rotating part is
very different from the body Doppler, the two interfere with
each other if processed together. To overcome this problem,

IEE Proc.-Radar Sonar Navig., Vol. 150. No. 4. August 2003

we parameterise and separate the two parts using the
adaptive signal representation. In particular, after formulat-
ing an AM—FM model for the radar signal, the four-
parameter chirplet basis is used to account for the time and
frequency localisation of the signal. Afier the parameterisa-
tion, the scparation is achieved by a criterion based on the
extracted Doppler frequency and Doppler rate parameters.
The algorithm has been successfully tested with point-
scatterer simulations and applied to two measurement data
sets. In the aircraft data. we are able to reconstruct a better
aircraft body image after the separation. In the walking
person data, we are able to more accurately estimate arm
swing rate. The results demonstrate the potential application
of this algorithm for target identification using ISAR data
from non-rigid-body targets.
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A SYNTHETIC APERTURE ALGORITHM FOR GROUND-
PENETRATING RADAR IMAGING

C. Ozdemir", S. Lim® and H. Ling’

! Dept. of Electrical-Electronics Engineering, Mersin University,
Ciftlikkoy, 33343 Mersin, TURKEY.
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A formulation for ground penetrating radar (GPR) imaging using synthetic aperture
concept is introduced. We show that it is possible to form a 3D image by inverse Fourier
transforming the multi-frequency, multi-spatial scattered field. The proposed algorithm
for GPR imaging is tested with measured and simulation data.
The resulting images demonstrate good agreement between the measured and simulated
cases.

Introduction: The imaging of buried objects or inhomogeneities underground using ground
penetrating radars (GPR) has been a topic of interest for a wide variety of applications ranging
from mine detection to archeology. Many GPR imaging algorithms have been proposed in
the literature [1-5]. Although good depth resolution can usually be realized in GPR images
using frequency diversity, good resolution in the cross-range dimensions is much harder to
achieve. Capineri et al. [3] proposed a method for obtaining good resolution in GPR images
out of B-scan data by applying the Hough transformation technique. Morrow and Van
Genderen [4] and Van Dongen et al. [5] applied the back propagation and conjugate gradient
inversion techniques to form two-dimensional (2D) and three-dimensional (3D) images for a
borehole radar. However, these techniques have significant computational burden.
Therefore, there is a need for obtaining images with good range and cross-range resolution
with a fast algorithm.

We have previously déveloped a synthetic aperture algorithm for imaging antenna-
platform interactions based on multi-frequency, multi-spatial scattered field data [6-8]. In this
paper, we extend our algorithm to generate 3D GPR imaées of scattered data from buried

objects underground. This technique is based on the approximate Fourier transform




relationship between the frequency-spatial variables and the distance-angle information of the
buried scatterer. The algorithm is quite attractive since it forms 3D images by using a fast
Fourier transform (FFT) followed by a simple transformation from the distance-angle domain
to the image domain. It is computationally fast. Furthermore, the cross-range resolution can

be made as good as the range resolution by controlling the size of the collection aperture.

SAR Approach for GPR Imaging: Similar to the antenna synthetic aperture radar algorithm [6-
8], our GPR imaging algorithm is based on collecting the multi-frequency scattered electric
field over a two-dimensional spatial grid lying on top of the ground as shown in Fig. 1. We
assume the target point P is located at an unknown location (x; s z;). We also assume that
the frequency bandwidth is small compared to the center frequency and that the aperture
dimensions are small compared to Ry, the path length from P to the receiver. Under these

assumptions, the scattered electric field at the receiver can be approximated as follows:

ES (k,x',z') = Ai .e"jk(Rli+R2i) .e-jkc-xvsina,- .e—jkc.z-sina,- sin §; (1)

where 4; is the strength of the scattered field, & =27 4/¢, /A is the wave number in the soil
and &, is the relative permittivity of the ground._k is proportional to the radar frequency, and

k. corresponds to the wave number at the center frequency. By taking the 3D inverse Fourier
transform of the scattered electric field with respect to &, x’ and z’, it is possible to pinpoint

the total travel distance and the angles related to the scatterer location as follows:

ES(R,U,V) = Ai '5(R—(.Rh' +R21))§(U —sin a,-)-é'(V——sin Q; sin ﬂ,) (2)

Here, we introduce three new variables R=R;+R;, U=sina and V=sina=sinf for simplicity.
Once an image in the (R, U, ¥) domain is generated, we can then transform it from the (R, U,

V) into the spatial (x, y, z) domain by using the trigonometric relationship between the




variables (R, «, p) and (x, y, 2). The transformations from (R, U, V) to (%, y, z) is unique and
correctly maps the scatterer location [8]. However, the resultant point spread response in the

image is slightly distorted due to the nonlinear nature of the transformation.

Experimental Results: To test our GPR imaging algorithm, we built an experimental setup
shown in F1g 2. In this setup, a wooden pit was constructed and was filled with play sand.
The dielectric constant of the sand was measured by comparing the phase delay between a
pair of antennas in the air to that in the sand. The dielectric constant of the sand was found to
be nearly constant at 2.26 for the frequency range from 5GHz to 6GHz. For our GPR
experiment, a rectangular copper plate whose dimensions are 46¢m in the x-direction and
30cm in the z-direction was buried at 46cm below the sand surface. The plate is located at
50cm away from the transmitter along the x-axis. The 82 between the transmitter and the
receiver was measurgd using an HP8753C network analyzer. As the transmitter and the
receiver antennas, identical coax-fed, rectangular waveguide antennas whose dimensions are
3.81cm and 1.91cm were used. The transmitter antenna was assumed to be placed at the
origin and the receiving grid was assumed to be centered at 1m along the positive x-direction.
Both antennas were horizontally polarized such that the electric field was parallel to the metal
plate. The scattered field was collected over 100 different spatial points. The size of the 10-
by-10 receiving grid was 31.04cm in the x-direction and 14.83cm in the z-direction. For all
100 points, the signal frequency varied from 49226 GHz to 5.9352 GHz over 25 evenly
sampled points. The measured data from the experimental setup in Fig.2 were collected onto a
computer and processed. After applying the proposed algorithm, we generated a 3D GPR
| image of the region below the surface. Fig.3 (a) shows the 2D'projecfed GPR images onto the
principal Z-Y, X-Y and X-Z planes. Overlaid on the images are the projected outlines of the

plate. We observe two main hot spots in the image. The stronger one corresponds to the




scattering from the middle of the plate where a specular point exists. The weaker one
corresponds to the diffraction mechanism from the front edge of the plate. Both image
features agree well with the geometrical locations of the plate. In addition, resolutions in the
Cross range directions (i.e., in the x- and z-directions) are nearly the same as the resolution in
the range (y) direction. Note that fhe spots in the image do not have a simple point spread
form and they are somewhat defocused. This is due the non-linear transformation from the (R,
a, B) to the (x, y, z) domain, and a method to overcome this effect has been discussed in [7, 8].
Nonetheless, we can still see the separation between the two points on the plate, which are
spaced 23 cm apart. Therefore, our technique is able to achieve good resolutions in both the
range and the cross-range dimensions.

Simulation was also carried out using a physical optics calculation. After obtaining the
simulation data of the experimental setup, we applied the same imaging algorithm to form the
simulated GPR imagel. Fig.3 (b)} demonstrates the 2D project_ed GPR images from the
simulation data. By comparing the measured GPR images to the simulated ones, we see good
agreement between the two. Since the physical theory of diffraction contribution was absent
in the simulation, we notice that the edge diffraction contribution in the simulation is weaker
than that from the measured image. Finally, data were also collected and images formed
using other non-metallic objects. High-resolution iméges could be formed consistently using

the algorithm.

Conclusion: We presented a Fourier based imaging aigorithm for ground penetrating radar
based on the synthetic aperture radar concept. The algorithm uses the phase information of the
scattered field. By inverse Fourier transforming the scattered field data, we have shown that it
is possible to form high-resolution 3D GPR image of the region below the ground surface. To

test our imaging algorithm, data were collected from a buried metallic plate using an




experimental setup. Our imaging algorithm successfully formed a 3D GPR image of the plaie.
The measured image was also compared to that formed from simulation data generated using
the physical optics calculation. Good agreement between the measured and simulated images
was observed. The limitation of the present imaging algorithm is that it assumes the soil

medium to be homogeneous and the soil property is known a priori.
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